| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( c = C /\ d = D ) -> d = D ) |
| 2 |
|
simpl |
|- ( ( c = C /\ d = D ) -> c = C ) |
| 3 |
1 2
|
oveq12d |
|- ( ( c = C /\ d = D ) -> ( d Func c ) = ( D Func C ) ) |
| 4 |
1 2
|
oveq12d |
|- ( ( c = C /\ d = D ) -> ( d FuncCat c ) = ( D FuncCat C ) ) |
| 5 |
2 4
|
oveq12d |
|- ( ( c = C /\ d = D ) -> ( c UP ( d FuncCat c ) ) = ( C UP ( D FuncCat C ) ) ) |
| 6 |
|
oveq12 |
|- ( ( c = C /\ d = D ) -> ( c DiagFunc d ) = ( C DiagFunc D ) ) |
| 7 |
|
eqidd |
|- ( ( c = C /\ d = D ) -> f = f ) |
| 8 |
5 6 7
|
oveq123d |
|- ( ( c = C /\ d = D ) -> ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f ) = ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) |
| 9 |
3 8
|
mpteq12dv |
|- ( ( c = C /\ d = D ) -> ( f e. ( d Func c ) |-> ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f ) ) = ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) ) |
| 10 |
|
df-cmd |
|- Colimit = ( c e. _V , d e. _V |-> ( f e. ( d Func c ) |-> ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f ) ) ) |
| 11 |
|
ovex |
|- ( D Func C ) e. _V |
| 12 |
11
|
mptex |
|- ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) e. _V |
| 13 |
9 10 12
|
ovmpoa |
|- ( ( C e. _V /\ D e. _V ) -> ( C Colimit D ) = ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) ) |
| 14 |
|
reldmcmd |
|- Rel dom Colimit |
| 15 |
14
|
ovprc |
|- ( -. ( C e. _V /\ D e. _V ) -> ( C Colimit D ) = (/) ) |
| 16 |
|
ancom |
|- ( ( C e. _V /\ D e. _V ) <-> ( D e. _V /\ C e. _V ) ) |
| 17 |
|
reldmfunc |
|- Rel dom Func |
| 18 |
17
|
ovprc |
|- ( -. ( D e. _V /\ C e. _V ) -> ( D Func C ) = (/) ) |
| 19 |
16 18
|
sylnbi |
|- ( -. ( C e. _V /\ D e. _V ) -> ( D Func C ) = (/) ) |
| 20 |
19
|
mpteq1d |
|- ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) = ( f e. (/) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) ) |
| 21 |
|
mpt0 |
|- ( f e. (/) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) = (/) |
| 22 |
20 21
|
eqtrdi |
|- ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) = (/) ) |
| 23 |
15 22
|
eqtr4d |
|- ( -. ( C e. _V /\ D e. _V ) -> ( C Colimit D ) = ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) ) |
| 24 |
13 23
|
pm2.61i |
|- ( C Colimit D ) = ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) |