Metamath Proof Explorer


Definition df-cmd

Description: A co-cone (or cocone) to a diagram (see df-lmd for definition), or a natural sink for a diagram in a category C is a pair of an object X in C and a natural transformation from the diagram to the constant functor (or constant diagram) of the object X . The second component associates each object in the index category with a morphism in C whose codomain is X ( coccl ). The naturality guarantees that the combination of the diagram with the co-cone must commute ( coccom ). Definition 11.27(1) of Adamek p. 202.

A colimit of a diagram F : D --> C of type D in category C is a universal pair from the diagram to the diagonal functor ( C DiagFunc D ) . The universal pair is a co-cone to the diagram satisfying the universal property, that each co-cone to the diagram uniquely factors through the colimit. ( iscmd ). Definition 11.27(2) of Adamek p. 202.

Initial objects, coproducts, coequalizers, pushouts, and direct limits can be considered as colimits of some diagram; colimits can be further generalized as left Kan extensions ( df-lan ).

"cmd" is short for "colimit of a diagram". See df-lmd for the dual concept. (Contributed by Zhi Wang, 12-Nov-2025)

Ref Expression
Assertion df-cmd
|- Colimit = ( c e. _V , d e. _V |-> ( f e. ( d Func c ) |-> ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmd
 |-  Colimit
1 vc
 |-  c
2 cvv
 |-  _V
3 vd
 |-  d
4 vf
 |-  f
5 3 cv
 |-  d
6 cfunc
 |-  Func
7 1 cv
 |-  c
8 5 7 6 co
 |-  ( d Func c )
9 cdiag
 |-  DiagFunc
10 7 5 9 co
 |-  ( c DiagFunc d )
11 cup
 |-  UP
12 cfuc
 |-  FuncCat
13 5 7 12 co
 |-  ( d FuncCat c )
14 7 13 11 co
 |-  ( c UP ( d FuncCat c ) )
15 4 cv
 |-  f
16 10 15 14 co
 |-  ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f )
17 4 8 16 cmpt
 |-  ( f e. ( d Func c ) |-> ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f ) )
18 1 3 2 2 17 cmpo
 |-  ( c e. _V , d e. _V |-> ( f e. ( d Func c ) |-> ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f ) ) )
19 0 18 wceq
 |-  Colimit = ( c e. _V , d e. _V |-> ( f e. ( d Func c ) |-> ( ( c DiagFunc d ) ( c UP ( d FuncCat c ) ) f ) ) )