| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmd.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
islmd.a |
|- A = ( Base ` C ) |
| 3 |
|
islmd.n |
|- N = ( D Nat C ) |
| 4 |
|
islmd.b |
|- B = ( Base ` D ) |
| 5 |
|
concl.k |
|- K = ( ( 1st ` L ) ` X ) |
| 6 |
|
concl.x |
|- ( ph -> X e. A ) |
| 7 |
|
concl.y |
|- ( ph -> Y e. B ) |
| 8 |
|
coccl.h |
|- H = ( Hom ` C ) |
| 9 |
|
coccl.r |
|- ( ph -> R e. ( F N K ) ) |
| 10 |
3 9
|
nat1st2nd |
|- ( ph -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 11 |
3 10 4 8 7
|
natcl |
|- ( ph -> ( R ` Y ) e. ( ( ( 1st ` F ) ` Y ) H ( ( 1st ` K ) ` Y ) ) ) |
| 12 |
3 10
|
natrcl2 |
|- ( ph -> ( 1st ` F ) ( D Func C ) ( 2nd ` F ) ) |
| 13 |
12
|
funcrcl3 |
|- ( ph -> C e. Cat ) |
| 14 |
12
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 15 |
1 13 14 2 6 5 4 7
|
diag11 |
|- ( ph -> ( ( 1st ` K ) ` Y ) = X ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( ( ( 1st ` F ) ` Y ) H ( ( 1st ` K ) ` Y ) ) = ( ( ( 1st ` F ) ` Y ) H X ) ) |
| 17 |
11 16
|
eleqtrd |
|- ( ph -> ( R ` Y ) e. ( ( ( 1st ` F ) ` Y ) H X ) ) |