| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmd.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
islmd.a |
|- A = ( Base ` C ) |
| 3 |
|
islmd.n |
|- N = ( D Nat C ) |
| 4 |
|
islmd.b |
|- B = ( Base ` D ) |
| 5 |
|
islmd.h |
|- H = ( Hom ` C ) |
| 6 |
|
islmd.x |
|- .x. = ( comp ` C ) |
| 7 |
|
cmdfval2 |
|- ( ( C Colimit D ) ` F ) = ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) |
| 8 |
1
|
oveq1i |
|- ( L ( C UP ( D FuncCat C ) ) F ) = ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) |
| 9 |
7 8
|
eqtr4i |
|- ( ( C Colimit D ) ` F ) = ( L ( C UP ( D FuncCat C ) ) F ) |
| 10 |
9
|
breqi |
|- ( X ( ( C Colimit D ) ` F ) R <-> X ( L ( C UP ( D FuncCat C ) ) F ) R ) |
| 11 |
|
id |
|- ( X ( L ( C UP ( D FuncCat C ) ) F ) R -> X ( L ( C UP ( D FuncCat C ) ) F ) R ) |
| 12 |
11
|
up1st2nd |
|- ( X ( L ( C UP ( D FuncCat C ) ) F ) R -> X ( <. ( 1st ` L ) , ( 2nd ` L ) >. ( C UP ( D FuncCat C ) ) F ) R ) |
| 13 |
12 2
|
uprcl4 |
|- ( X ( L ( C UP ( D FuncCat C ) ) F ) R -> X e. A ) |
| 14 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
| 15 |
14 3
|
fuchom |
|- N = ( Hom ` ( D FuncCat C ) ) |
| 16 |
12 15
|
uprcl5 |
|- ( X ( L ( C UP ( D FuncCat C ) ) F ) R -> R e. ( F N ( ( 1st ` L ) ` X ) ) ) |
| 17 |
13 16
|
jca |
|- ( X ( L ( C UP ( D FuncCat C ) ) F ) R -> ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) ) |
| 18 |
3
|
natrcl |
|- ( R e. ( F N ( ( 1st ` L ) ` X ) ) -> ( F e. ( D Func C ) /\ ( ( 1st ` L ) ` X ) e. ( D Func C ) ) ) |
| 19 |
18
|
adantl |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> ( F e. ( D Func C ) /\ ( ( 1st ` L ) ` X ) e. ( D Func C ) ) ) |
| 20 |
19
|
simpld |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> F e. ( D Func C ) ) |
| 21 |
20
|
func1st2nd |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> ( 1st ` F ) ( D Func C ) ( 2nd ` F ) ) |
| 22 |
21
|
funcrcl3 |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> C e. Cat ) |
| 23 |
21
|
funcrcl2 |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> D e. Cat ) |
| 24 |
1 22 23 14
|
diagcl |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> L e. ( C Func ( D FuncCat C ) ) ) |
| 25 |
24
|
up1st2ndb |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> ( X ( L ( C UP ( D FuncCat C ) ) F ) R <-> X ( <. ( 1st ` L ) , ( 2nd ` L ) >. ( C UP ( D FuncCat C ) ) F ) R ) ) |
| 26 |
14
|
fucbas |
|- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
| 27 |
|
eqid |
|- ( comp ` ( D FuncCat C ) ) = ( comp ` ( D FuncCat C ) ) |
| 28 |
24
|
func1st2nd |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 29 |
|
simpl |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> X e. A ) |
| 30 |
|
simpr |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> R e. ( F N ( ( 1st ` L ) ` X ) ) ) |
| 31 |
2 26 5 15 27 20 28 29 30
|
isup |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> ( X ( <. ( 1st ` L ) , ( 2nd ` L ) >. ( C UP ( D FuncCat C ) ) F ) R <-> A. x e. A A. a e. ( F N ( ( 1st ` L ) ` x ) ) E! m e. ( X H x ) a = ( ( ( X ( 2nd ` L ) x ) ` m ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) ) ) |
| 32 |
22
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> C e. Cat ) |
| 33 |
23
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> D e. Cat ) |
| 34 |
29
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> X e. A ) |
| 35 |
|
simplrl |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> x e. A ) |
| 36 |
|
simpr |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> m e. ( X H x ) ) |
| 37 |
1 2 4 5 32 33 34 35 36
|
diag2 |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> ( ( X ( 2nd ` L ) x ) ` m ) = ( B X. { m } ) ) |
| 38 |
37
|
oveq1d |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> ( ( ( X ( 2nd ` L ) x ) ` m ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) = ( ( B X. { m } ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) ) |
| 39 |
30
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> R e. ( F N ( ( 1st ` L ) ` X ) ) ) |
| 40 |
1 2 4 5 32 33 34 35 36 3
|
diag2cl |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> ( B X. { m } ) e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` x ) ) ) |
| 41 |
14 3 4 6 27 39 40
|
fucco |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> ( ( B X. { m } ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) = ( j e. B |-> ( ( ( B X. { m } ) ` j ) ( <. ( ( 1st ` F ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) ) ( R ` j ) ) ) ) |
| 42 |
32
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> C e. Cat ) |
| 43 |
33
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> D e. Cat ) |
| 44 |
34
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> X e. A ) |
| 45 |
|
eqid |
|- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
| 46 |
|
simpr |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> j e. B ) |
| 47 |
1 42 43 2 44 45 4 46
|
diag11 |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) = X ) |
| 48 |
47
|
opeq2d |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> <. ( ( 1st ` F ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. = <. ( ( 1st ` F ) ` j ) , X >. ) |
| 49 |
35
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> x e. A ) |
| 50 |
|
eqid |
|- ( ( 1st ` L ) ` x ) = ( ( 1st ` L ) ` x ) |
| 51 |
1 42 43 2 49 50 4 46
|
diag11 |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) = x ) |
| 52 |
48 51
|
oveq12d |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> ( <. ( ( 1st ` F ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) ) = ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ) |
| 53 |
|
vex |
|- m e. _V |
| 54 |
53
|
fvconst2 |
|- ( j e. B -> ( ( B X. { m } ) ` j ) = m ) |
| 55 |
54
|
adantl |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> ( ( B X. { m } ) ` j ) = m ) |
| 56 |
|
eqidd |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> ( R ` j ) = ( R ` j ) ) |
| 57 |
52 55 56
|
oveq123d |
|- ( ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) /\ j e. B ) -> ( ( ( B X. { m } ) ` j ) ( <. ( ( 1st ` F ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) ) ( R ` j ) ) = ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) |
| 58 |
57
|
mpteq2dva |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> ( j e. B |-> ( ( ( B X. { m } ) ` j ) ( <. ( ( 1st ` F ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) ) ( R ` j ) ) ) = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) |
| 59 |
38 41 58
|
3eqtrd |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> ( ( ( X ( 2nd ` L ) x ) ` m ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) |
| 60 |
59
|
eqeq2d |
|- ( ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) /\ m e. ( X H x ) ) -> ( a = ( ( ( X ( 2nd ` L ) x ) ` m ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) <-> a = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) ) |
| 61 |
60
|
reubidva |
|- ( ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ ( x e. A /\ a e. ( F N ( ( 1st ` L ) ` x ) ) ) ) -> ( E! m e. ( X H x ) a = ( ( ( X ( 2nd ` L ) x ) ` m ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) <-> E! m e. ( X H x ) a = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) ) |
| 62 |
61
|
2ralbidva |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> ( A. x e. A A. a e. ( F N ( ( 1st ` L ) ` x ) ) E! m e. ( X H x ) a = ( ( ( X ( 2nd ` L ) x ) ` m ) ( <. F , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) ( ( 1st ` L ) ` x ) ) R ) <-> A. x e. A A. a e. ( F N ( ( 1st ` L ) ` x ) ) E! m e. ( X H x ) a = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) ) |
| 63 |
25 31 62
|
3bitrd |
|- ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) -> ( X ( L ( C UP ( D FuncCat C ) ) F ) R <-> A. x e. A A. a e. ( F N ( ( 1st ` L ) ` x ) ) E! m e. ( X H x ) a = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) ) |
| 64 |
17 63
|
biadanii |
|- ( X ( L ( C UP ( D FuncCat C ) ) F ) R <-> ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ A. x e. A A. a e. ( F N ( ( 1st ` L ) ` x ) ) E! m e. ( X H x ) a = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) ) |
| 65 |
10 64
|
bitri |
|- ( X ( ( C Colimit D ) ` F ) R <-> ( ( X e. A /\ R e. ( F N ( ( 1st ` L ) ` X ) ) ) /\ A. x e. A A. a e. ( F N ( ( 1st ` L ) ` x ) ) E! m e. ( X H x ) a = ( j e. B |-> ( m ( <. ( ( 1st ` F ) ` j ) , X >. .x. x ) ( R ` j ) ) ) ) ) |