Metamath Proof Explorer


Theorem iscmd

Description: The universal property of colimits of a diagram. (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Hypotheses islmd.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
islmd.a 𝐴 = ( Base ‘ 𝐶 )
islmd.n 𝑁 = ( 𝐷 Nat 𝐶 )
islmd.b 𝐵 = ( Base ‘ 𝐷 )
islmd.h 𝐻 = ( Hom ‘ 𝐶 )
islmd.x · = ( comp ‘ 𝐶 )
Assertion iscmd ( 𝑋 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) 𝑅 ↔ ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ∀ 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 islmd.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 islmd.a 𝐴 = ( Base ‘ 𝐶 )
3 islmd.n 𝑁 = ( 𝐷 Nat 𝐶 )
4 islmd.b 𝐵 = ( Base ‘ 𝐷 )
5 islmd.h 𝐻 = ( Hom ‘ 𝐶 )
6 islmd.x · = ( comp ‘ 𝐶 )
7 cmdfval2 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 )
8 1 oveq1i ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 )
9 7 8 eqtr4i ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 )
10 9 breqi ( 𝑋 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) 𝑅𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 )
11 id ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 )
12 11 up1st2nd ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅𝑋 ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 )
13 12 2 uprcl4 ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅𝑋𝐴 )
14 eqid ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 )
15 14 3 fuchom 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) )
16 12 15 uprcl5 ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
17 13 16 jca ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 → ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) )
18 3 natrcl ( 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ ( ( 1st𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) )
19 18 adantl ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ ( ( 1st𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) )
20 19 simpld ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) )
21 20 func1st2nd ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → ( 1st𝐹 ) ( 𝐷 Func 𝐶 ) ( 2nd𝐹 ) )
22 21 funcrcl3 ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → 𝐶 ∈ Cat )
23 21 funcrcl2 ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → 𝐷 ∈ Cat )
24 1 22 23 14 diagcl ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
25 24 up1st2ndb ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅𝑋 ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ) )
26 14 fucbas ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) )
27 eqid ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( comp ‘ ( 𝐷 FuncCat 𝐶 ) )
28 24 func1st2nd ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → ( 1st𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd𝐿 ) )
29 simpl ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → 𝑋𝐴 )
30 simpr ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
31 2 26 5 15 27 20 28 29 30 isup ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → ( 𝑋 ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ↔ ∀ 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( ( ( 𝑋 ( 2nd𝐿 ) 𝑥 ) ‘ 𝑚 ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ) )
32 22 ad2antrr ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝐶 ∈ Cat )
33 23 ad2antrr ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝐷 ∈ Cat )
34 29 ad2antrr ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑋𝐴 )
35 simplrl ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑥𝐴 )
36 simpr ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) )
37 1 2 4 5 32 33 34 35 36 diag2 ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( 𝑋 ( 2nd𝐿 ) 𝑥 ) ‘ 𝑚 ) = ( 𝐵 × { 𝑚 } ) )
38 37 oveq1d ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( ( 𝑋 ( 2nd𝐿 ) 𝑥 ) ‘ 𝑚 ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) = ( ( 𝐵 × { 𝑚 } ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) )
39 30 ad2antrr ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
40 1 2 4 5 32 33 34 35 36 3 diag2cl ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( 𝐵 × { 𝑚 } ) ∈ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) )
41 14 3 4 6 27 39 40 fucco ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( 𝐵 × { 𝑚 } ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) = ( 𝑗𝐵 ↦ ( ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) ⟩ · ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ( 𝑅𝑗 ) ) ) )
42 32 adantr ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → 𝐶 ∈ Cat )
43 33 adantr ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → 𝐷 ∈ Cat )
44 34 adantr ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → 𝑋𝐴 )
45 eqid ( ( 1st𝐿 ) ‘ 𝑋 ) = ( ( 1st𝐿 ) ‘ 𝑋 )
46 simpr ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → 𝑗𝐵 )
47 1 42 43 2 44 45 4 46 diag11 ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) = 𝑋 )
48 47 opeq2d ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) ⟩ = ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋 ⟩ )
49 35 adantr ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → 𝑥𝐴 )
50 eqid ( ( 1st𝐿 ) ‘ 𝑥 ) = ( ( 1st𝐿 ) ‘ 𝑥 )
51 1 42 43 2 49 50 4 46 diag11 ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = 𝑥 )
52 48 51 oveq12d ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) ⟩ · ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) = ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) )
53 vex 𝑚 ∈ V
54 53 fvconst2 ( 𝑗𝐵 → ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) = 𝑚 )
55 54 adantl ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) = 𝑚 )
56 eqidd ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → ( 𝑅𝑗 ) = ( 𝑅𝑗 ) )
57 52 55 56 oveq123d ( ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗𝐵 ) → ( ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) ⟩ · ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ( 𝑅𝑗 ) ) = ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) )
58 57 mpteq2dva ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( 𝑗𝐵 ↦ ( ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) ⟩ · ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ( 𝑅𝑗 ) ) ) = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) )
59 38 41 58 3eqtrd ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( ( 𝑋 ( 2nd𝐿 ) 𝑥 ) ‘ 𝑚 ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) )
60 59 eqeq2d ( ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( 𝑎 = ( ( ( 𝑋 ( 2nd𝐿 ) 𝑥 ) ‘ 𝑚 ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ↔ 𝑎 = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) ) )
61 60 reubidva ( ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ) → ( ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( ( ( 𝑋 ( 2nd𝐿 ) 𝑥 ) ‘ 𝑚 ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ↔ ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) ) )
62 61 2ralbidva ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → ( ∀ 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( ( ( 𝑋 ( 2nd𝐿 ) 𝑥 ) ‘ 𝑚 ) ( ⟨ 𝐹 , ( ( 1st𝐿 ) ‘ 𝑋 ) ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ↔ ∀ 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) ) )
63 25 31 62 3bitrd ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) → ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ↔ ∀ 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) ) )
64 17 63 biadanii ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ↔ ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ∀ 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) ) )
65 10 64 bitri ( 𝑋 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) 𝑅 ↔ ( ( 𝑋𝐴𝑅 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ∧ ∀ 𝑥𝐴𝑎 ∈ ( 𝐹 𝑁 ( ( 1st𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗𝐵 ↦ ( 𝑚 ( ⟨ ( ( 1st𝐹 ) ‘ 𝑗 ) , 𝑋· 𝑥 ) ( 𝑅𝑗 ) ) ) ) )