| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmd.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
islmd.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
islmd.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) |
| 4 |
|
islmd.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 5 |
|
islmd.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
islmd.x |
⊢ · = ( comp ‘ 𝐶 ) |
| 7 |
|
cmdfval2 |
⊢ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) |
| 8 |
1
|
oveq1i |
⊢ ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) |
| 9 |
7 8
|
eqtr4i |
⊢ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) |
| 10 |
9
|
breqi |
⊢ ( 𝑋 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) 𝑅 ↔ 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ) |
| 11 |
|
id |
⊢ ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 → 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ) |
| 12 |
11
|
up1st2nd |
⊢ ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 → 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ) |
| 13 |
12 2
|
uprcl4 |
⊢ ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 → 𝑋 ∈ 𝐴 ) |
| 14 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 15 |
14 3
|
fuchom |
⊢ 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 16 |
12 15
|
uprcl5 |
⊢ ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 → 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| 17 |
13 16
|
jca |
⊢ ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 → ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ) |
| 18 |
3
|
natrcl |
⊢ ( 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) ) |
| 20 |
19
|
simpld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 21 |
20
|
func1st2nd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → ( 1st ‘ 𝐹 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐹 ) ) |
| 22 |
21
|
funcrcl3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
| 23 |
21
|
funcrcl2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → 𝐷 ∈ Cat ) |
| 24 |
1 22 23 14
|
diagcl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 25 |
24
|
up1st2ndb |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ↔ 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ) ) |
| 26 |
14
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 27 |
|
eqid |
⊢ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 28 |
24
|
func1st2nd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 29 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → 𝑋 ∈ 𝐴 ) |
| 30 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| 31 |
2 26 5 15 27 20 28 29 30
|
isup |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → ( 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑚 ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ) ) |
| 32 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝐶 ∈ Cat ) |
| 33 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝐷 ∈ Cat ) |
| 34 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑋 ∈ 𝐴 ) |
| 35 |
|
simplrl |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 36 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) |
| 37 |
1 2 4 5 32 33 34 35 36
|
diag2 |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑚 ) = ( 𝐵 × { 𝑚 } ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑚 ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) = ( ( 𝐵 × { 𝑚 } ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ) |
| 39 |
30
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| 40 |
1 2 4 5 32 33 34 35 36 3
|
diag2cl |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( 𝐵 × { 𝑚 } ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) |
| 41 |
14 3 4 6 27 39 40
|
fucco |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( 𝐵 × { 𝑚 } ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) = ( 𝑗 ∈ 𝐵 ↦ ( ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ( 𝑅 ‘ 𝑗 ) ) ) ) |
| 42 |
32
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 43 |
33
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 44 |
34
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 45 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 46 |
|
simpr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑗 ∈ 𝐵 ) |
| 47 |
1 42 43 2 44 45 4 46
|
diag11 |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) = 𝑋 ) |
| 48 |
47
|
opeq2d |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 ) |
| 49 |
35
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 50 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) |
| 51 |
1 42 43 2 49 50 4 46
|
diag11 |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = 𝑥 ) |
| 52 |
48 51
|
oveq12d |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ) |
| 53 |
|
vex |
⊢ 𝑚 ∈ V |
| 54 |
53
|
fvconst2 |
⊢ ( 𝑗 ∈ 𝐵 → ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) = 𝑚 ) |
| 55 |
54
|
adantl |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) = 𝑚 ) |
| 56 |
|
eqidd |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝑅 ‘ 𝑗 ) = ( 𝑅 ‘ 𝑗 ) ) |
| 57 |
52 55 56
|
oveq123d |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ( 𝑅 ‘ 𝑗 ) ) = ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) |
| 58 |
57
|
mpteq2dva |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( 𝑗 ∈ 𝐵 ↦ ( ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ( 𝑅 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) |
| 59 |
38 41 58
|
3eqtrd |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑚 ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) |
| 60 |
59
|
eqeq2d |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) ∧ 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) ) → ( 𝑎 = ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑚 ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ↔ 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
| 61 |
60
|
reubidva |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) ) → ( ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑚 ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ↔ ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
| 62 |
61
|
2ralbidva |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑚 ) ( 〈 𝐹 , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
| 63 |
25 31 62
|
3bitrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) → ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
| 64 |
17 63
|
biadanii |
⊢ ( 𝑋 ( 𝐿 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑅 ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
| 65 |
10 64
|
bitri |
⊢ ( 𝑋 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) 𝑅 ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( 𝐹 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑥 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( 𝑚 ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) , 𝑋 〉 · 𝑥 ) ( 𝑅 ‘ 𝑗 ) ) ) ) ) |