| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag2.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diag2.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
diag2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 4 |
|
diag2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 5 |
|
diag2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
diag2.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 7 |
|
diag2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
diag2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 9 |
|
diag2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 10 |
1 5 6
|
diagval |
⊢ ( 𝜑 → 𝐿 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ 𝐿 ) = ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ) |
| 12 |
11
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) = ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ) |
| 13 |
12
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) ) |
| 14 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) |
| 15 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
| 16 |
|
eqid |
⊢ ( 𝐶 1stF 𝐷 ) = ( 𝐶 1stF 𝐷 ) |
| 17 |
15 5 6 16
|
1stfcl |
⊢ ( 𝜑 → ( 𝐶 1stF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐶 ) ) |
| 18 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
| 19 |
|
eqid |
⊢ ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) |
| 20 |
14 2 5 6 17 3 4 18 7 8 9 19
|
curf2 |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
| 21 |
15 2 3
|
xpcbas |
⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 22 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) |
| 23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 24 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 25 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑋 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 26 |
7 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑋 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 27 |
|
opelxpi |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑌 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 28 |
8 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑌 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 29 |
15 21 22 23 24 16 26 28
|
1stf2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) = ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ) |
| 30 |
29
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( 𝐹 ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) |
| 31 |
|
df-ov |
⊢ ( 𝐹 ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) |
| 32 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 33 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 35 |
3 33 18 24 34
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
| 36 |
32 35
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) ) |
| 37 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 38 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
| 39 |
15 2 3 4 33 37 34 38 34 22
|
xpchom2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) ) |
| 40 |
36 39
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ∈ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) |
| 41 |
40
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) = ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) ) |
| 42 |
31 41
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) ) |
| 43 |
|
op1stg |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) → ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) = 𝐹 ) |
| 44 |
9 35 43
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) = 𝐹 ) |
| 45 |
30 42 44
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = 𝐹 ) |
| 46 |
45
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ 𝐹 ) ) |
| 47 |
|
fconstmpt |
⊢ ( 𝐵 × { 𝐹 } ) = ( 𝑥 ∈ 𝐵 ↦ 𝐹 ) |
| 48 |
46 47
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝐵 × { 𝐹 } ) ) |
| 49 |
13 20 48
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |