Metamath Proof Explorer


Theorem diag2cl

Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses diag2.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
diag2.a 𝐴 = ( Base ‘ 𝐶 )
diag2.b 𝐵 = ( Base ‘ 𝐷 )
diag2.h 𝐻 = ( Hom ‘ 𝐶 )
diag2.c ( 𝜑𝐶 ∈ Cat )
diag2.d ( 𝜑𝐷 ∈ Cat )
diag2.x ( 𝜑𝑋𝐴 )
diag2.y ( 𝜑𝑌𝐴 )
diag2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
diag2cl.h 𝑁 = ( 𝐷 Nat 𝐶 )
Assertion diag2cl ( 𝜑 → ( 𝐵 × { 𝐹 } ) ∈ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 diag2.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 diag2.a 𝐴 = ( Base ‘ 𝐶 )
3 diag2.b 𝐵 = ( Base ‘ 𝐷 )
4 diag2.h 𝐻 = ( Hom ‘ 𝐶 )
5 diag2.c ( 𝜑𝐶 ∈ Cat )
6 diag2.d ( 𝜑𝐷 ∈ Cat )
7 diag2.x ( 𝜑𝑋𝐴 )
8 diag2.y ( 𝜑𝑌𝐴 )
9 diag2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
10 diag2cl.h 𝑁 = ( 𝐷 Nat 𝐶 )
11 1 2 3 4 5 6 7 8 9 diag2 ( 𝜑 → ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) )
12 eqid ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 )
13 12 10 fuchom 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) )
14 relfunc Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) )
15 1 5 6 12 diagcl ( 𝜑𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
16 1st2ndbr ( ( Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) → ( 1st𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd𝐿 ) )
17 14 15 16 sylancr ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd𝐿 ) )
18 2 4 13 17 7 8 funcf2 ( 𝜑 → ( 𝑋 ( 2nd𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) )
19 18 9 ffvelrnd ( 𝜑 → ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐹 ) ∈ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) )
20 11 19 eqeltrrd ( 𝜑 → ( 𝐵 × { 𝐹 } ) ∈ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) )