Step |
Hyp |
Ref |
Expression |
1 |
|
diag2.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
2 |
|
diag2.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
3 |
|
diag2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
4 |
|
diag2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
diag2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
diag2.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
7 |
|
diag2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
8 |
|
diag2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
9 |
|
diag2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
|
diag2cl.h |
⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) |
11 |
1 2 3 4 5 6 7 8 9
|
diag2 |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |
12 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
13 |
12 10
|
fuchom |
⊢ 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) ) |
14 |
|
relfunc |
⊢ Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) |
15 |
1 5 6 12
|
diagcl |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
16 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
17 |
14 15 16
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
18 |
2 4 13 17 7 8
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
19 |
18 9
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
20 |
11 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐵 × { 𝐹 } ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |