| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diagval.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diagval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
diagval.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 4 |
|
diagcl.q |
⊢ 𝑄 = ( 𝐷 FuncCat 𝐶 ) |
| 5 |
1 2 3
|
diagval |
⊢ ( 𝜑 → 𝐿 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) |
| 6 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) |
| 7 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
| 8 |
|
eqid |
⊢ ( 𝐶 1stF 𝐷 ) = ( 𝐶 1stF 𝐷 ) |
| 9 |
7 2 3 8
|
1stfcl |
⊢ ( 𝜑 → ( 𝐶 1stF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐶 ) ) |
| 10 |
6 4 2 3 9
|
curfcl |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ∈ ( 𝐶 Func 𝑄 ) ) |
| 11 |
5 10
|
eqeltrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func 𝑄 ) ) |