Metamath Proof Explorer


Theorem diagcl

Description: The diagonal functor is a functor from the base category to the functor category. Another way of saying this is that the constant functor ( y e. D |-> X ) is a construction that is natural in X (and covariant). (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses diagval.l L = C Δ func D
diagval.c φ C Cat
diagval.d φ D Cat
diagcl.q Q = D FuncCat C
Assertion diagcl φ L C Func Q

Proof

Step Hyp Ref Expression
1 diagval.l L = C Δ func D
2 diagval.c φ C Cat
3 diagval.d φ D Cat
4 diagcl.q Q = D FuncCat C
5 1 2 3 diagval φ L = C D curry F C 1 st F D
6 eqid C D curry F C 1 st F D = C D curry F C 1 st F D
7 eqid C × c D = C × c D
8 eqid C 1 st F D = C 1 st F D
9 7 2 3 8 1stfcl φ C 1 st F D C × c D Func C
10 6 4 2 3 9 curfcl φ C D curry F C 1 st F D C Func Q
11 5 10 eqeltrd φ L C Func Q