Metamath Proof Explorer


Theorem diagcl

Description: The diagonal functor is a functor from the base category to the functor category. Another way of saying this is that the constant functor ( y e. D |-> X ) is a construction that is natural in X (and covariant). (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses diagval.l L=CΔfuncD
diagval.c φCCat
diagval.d φDCat
diagcl.q Q=DFuncCatC
Assertion diagcl φLCFuncQ

Proof

Step Hyp Ref Expression
1 diagval.l L=CΔfuncD
2 diagval.c φCCat
3 diagval.d φDCat
4 diagcl.q Q=DFuncCatC
5 1 2 3 diagval φL=CDcurryFC1stFD
6 eqid CDcurryFC1stFD=CDcurryFC1stFD
7 eqid C×cD=C×cD
8 eqid C1stFD=C1stFD
9 7 2 3 8 1stfcl φC1stFDC×cDFuncC
10 6 4 2 3 9 curfcl φCDcurryFC1stFDCFuncQ
11 5 10 eqeltrd φLCFuncQ