Metamath Proof Explorer


Theorem diag1cl

Description: The constant functor of X is a functor. (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses diagval.l L=CΔfuncD
diagval.c φCCat
diagval.d φDCat
diag11.a A=BaseC
diag11.c φXA
diag11.k K=1stLX
Assertion diag1cl φKDFuncC

Proof

Step Hyp Ref Expression
1 diagval.l L=CΔfuncD
2 diagval.c φCCat
3 diagval.d φDCat
4 diag11.a A=BaseC
5 diag11.c φXA
6 diag11.k K=1stLX
7 eqid DFuncCatC=DFuncCatC
8 7 fucbas DFuncC=BaseDFuncCatC
9 relfunc RelCFuncDFuncCatC
10 1 2 3 7 diagcl φLCFuncDFuncCatC
11 1st2ndbr RelCFuncDFuncCatCLCFuncDFuncCatC1stLCFuncDFuncCatC2ndL
12 9 10 11 sylancr φ1stLCFuncDFuncCatC2ndL
13 4 8 12 funcf1 φ1stL:ADFuncC
14 13 5 ffvelcdmd φ1stLXDFuncC
15 6 14 eqeltrid φKDFuncC