| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diagval.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diagval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
diagval.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 4 |
|
diag11.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 5 |
|
diag11.c |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 6 |
|
diag11.k |
⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 7 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 8 |
7
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 9 |
|
relfunc |
⊢ Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) |
| 10 |
1 2 3 7
|
diagcl |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 11 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 12 |
9 10 11
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 13 |
4 8 12
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ) |
| 14 |
13 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) |
| 15 |
6 14
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) |