Step |
Hyp |
Ref |
Expression |
1 |
|
diagval.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
2 |
|
diagval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
3 |
|
diagval.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
4 |
|
diag11.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
5 |
|
diag11.c |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
6 |
|
diag11.k |
⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
7 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
8 |
7
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
9 |
|
relfunc |
⊢ Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) |
10 |
1 2 3 7
|
diagcl |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
11 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
13 |
4 8 12
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ) |
14 |
13 5
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) |
15 |
6 14
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) |