| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diagval.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diagval.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
diagval.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
diag11.a |
|- A = ( Base ` C ) |
| 5 |
|
diag11.c |
|- ( ph -> X e. A ) |
| 6 |
|
diag11.k |
|- K = ( ( 1st ` L ) ` X ) |
| 7 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
| 8 |
7
|
fucbas |
|- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
| 9 |
|
relfunc |
|- Rel ( C Func ( D FuncCat C ) ) |
| 10 |
1 2 3 7
|
diagcl |
|- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 11 |
|
1st2ndbr |
|- ( ( Rel ( C Func ( D FuncCat C ) ) /\ L e. ( C Func ( D FuncCat C ) ) ) -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 12 |
9 10 11
|
sylancr |
|- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 13 |
4 8 12
|
funcf1 |
|- ( ph -> ( 1st ` L ) : A --> ( D Func C ) ) |
| 14 |
13 5
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 15 |
6 14
|
eqeltrid |
|- ( ph -> K e. ( D Func C ) ) |