Step |
Hyp |
Ref |
Expression |
1 |
|
diagval.l |
|- L = ( C DiagFunc D ) |
2 |
|
diagval.c |
|- ( ph -> C e. Cat ) |
3 |
|
diagval.d |
|- ( ph -> D e. Cat ) |
4 |
|
diag11.a |
|- A = ( Base ` C ) |
5 |
|
diag11.c |
|- ( ph -> X e. A ) |
6 |
|
diag11.k |
|- K = ( ( 1st ` L ) ` X ) |
7 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
8 |
7
|
fucbas |
|- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
9 |
|
relfunc |
|- Rel ( C Func ( D FuncCat C ) ) |
10 |
1 2 3 7
|
diagcl |
|- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
11 |
|
1st2ndbr |
|- ( ( Rel ( C Func ( D FuncCat C ) ) /\ L e. ( C Func ( D FuncCat C ) ) ) -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
12 |
9 10 11
|
sylancr |
|- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
13 |
4 8 12
|
funcf1 |
|- ( ph -> ( 1st ` L ) : A --> ( D Func C ) ) |
14 |
13 5
|
ffvelrnd |
|- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
15 |
6 14
|
eqeltrid |
|- ( ph -> K e. ( D Func C ) ) |