Metamath Proof Explorer


Theorem diagcl

Description: The diagonal functor is a functor from the base category to the functor category. Another way of saying this is that the constant functor ( y e. D |-> X ) is a construction that is natural in X (and covariant). (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses diagval.l
|- L = ( C DiagFunc D )
diagval.c
|- ( ph -> C e. Cat )
diagval.d
|- ( ph -> D e. Cat )
diagcl.q
|- Q = ( D FuncCat C )
Assertion diagcl
|- ( ph -> L e. ( C Func Q ) )

Proof

Step Hyp Ref Expression
1 diagval.l
 |-  L = ( C DiagFunc D )
2 diagval.c
 |-  ( ph -> C e. Cat )
3 diagval.d
 |-  ( ph -> D e. Cat )
4 diagcl.q
 |-  Q = ( D FuncCat C )
5 1 2 3 diagval
 |-  ( ph -> L = ( <. C , D >. curryF ( C 1stF D ) ) )
6 eqid
 |-  ( <. C , D >. curryF ( C 1stF D ) ) = ( <. C , D >. curryF ( C 1stF D ) )
7 eqid
 |-  ( C Xc. D ) = ( C Xc. D )
8 eqid
 |-  ( C 1stF D ) = ( C 1stF D )
9 7 2 3 8 1stfcl
 |-  ( ph -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) )
10 6 4 2 3 9 curfcl
 |-  ( ph -> ( <. C , D >. curryF ( C 1stF D ) ) e. ( C Func Q ) )
11 5 10 eqeltrd
 |-  ( ph -> L e. ( C Func Q ) )