Step |
Hyp |
Ref |
Expression |
1 |
|
diagval.l |
|- L = ( C DiagFunc D ) |
2 |
|
diagval.c |
|- ( ph -> C e. Cat ) |
3 |
|
diagval.d |
|- ( ph -> D e. Cat ) |
4 |
|
df-diag |
|- DiagFunc = ( c e. Cat , d e. Cat |-> ( <. c , d >. curryF ( c 1stF d ) ) ) |
5 |
4
|
a1i |
|- ( ph -> DiagFunc = ( c e. Cat , d e. Cat |-> ( <. c , d >. curryF ( c 1stF d ) ) ) ) |
6 |
|
simprl |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> c = C ) |
7 |
|
simprr |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> d = D ) |
8 |
6 7
|
opeq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> <. c , d >. = <. C , D >. ) |
9 |
6 7
|
oveq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( c 1stF d ) = ( C 1stF D ) ) |
10 |
8 9
|
oveq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( <. c , d >. curryF ( c 1stF d ) ) = ( <. C , D >. curryF ( C 1stF D ) ) ) |
11 |
|
ovexd |
|- ( ph -> ( <. C , D >. curryF ( C 1stF D ) ) e. _V ) |
12 |
5 10 2 3 11
|
ovmpod |
|- ( ph -> ( C DiagFunc D ) = ( <. C , D >. curryF ( C 1stF D ) ) ) |
13 |
1 12
|
eqtrid |
|- ( ph -> L = ( <. C , D >. curryF ( C 1stF D ) ) ) |