Metamath Proof Explorer


Theorem diagval

Description: Define the diagonal functor, which is the functor C --> ( D Func C ) whose object part is x e. C |-> ( y e. D |-> x ) . We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses diagval.l L=CΔfuncD
diagval.c φCCat
diagval.d φDCat
Assertion diagval φL=CDcurryFC1stFD

Proof

Step Hyp Ref Expression
1 diagval.l L=CΔfuncD
2 diagval.c φCCat
3 diagval.d φDCat
4 df-diag Δfunc=cCat,dCatcdcurryFc1stFd
5 4 a1i φΔfunc=cCat,dCatcdcurryFc1stFd
6 simprl φc=Cd=Dc=C
7 simprr φc=Cd=Dd=D
8 6 7 opeq12d φc=Cd=Dcd=CD
9 6 7 oveq12d φc=Cd=Dc1stFd=C1stFD
10 8 9 oveq12d φc=Cd=DcdcurryFc1stFd=CDcurryFC1stFD
11 ovexd φCDcurryFC1stFDV
12 5 10 2 3 11 ovmpod φCΔfuncD=CDcurryFC1stFD
13 1 12 eqtrid φL=CDcurryFC1stFD