Step |
Hyp |
Ref |
Expression |
1 |
|
diag2.l |
|- L = ( C DiagFunc D ) |
2 |
|
diag2.a |
|- A = ( Base ` C ) |
3 |
|
diag2.b |
|- B = ( Base ` D ) |
4 |
|
diag2.h |
|- H = ( Hom ` C ) |
5 |
|
diag2.c |
|- ( ph -> C e. Cat ) |
6 |
|
diag2.d |
|- ( ph -> D e. Cat ) |
7 |
|
diag2.x |
|- ( ph -> X e. A ) |
8 |
|
diag2.y |
|- ( ph -> Y e. A ) |
9 |
|
diag2.f |
|- ( ph -> F e. ( X H Y ) ) |
10 |
|
diag2cl.h |
|- N = ( D Nat C ) |
11 |
1 2 3 4 5 6 7 8 9
|
diag2 |
|- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |
12 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
13 |
12 10
|
fuchom |
|- N = ( Hom ` ( D FuncCat C ) ) |
14 |
|
relfunc |
|- Rel ( C Func ( D FuncCat C ) ) |
15 |
1 5 6 12
|
diagcl |
|- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
16 |
|
1st2ndbr |
|- ( ( Rel ( C Func ( D FuncCat C ) ) /\ L e. ( C Func ( D FuncCat C ) ) ) -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
17 |
14 15 16
|
sylancr |
|- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
18 |
2 4 13 17 7 8
|
funcf2 |
|- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
19 |
18 9
|
ffvelrnd |
|- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
20 |
11 19
|
eqeltrrd |
|- ( ph -> ( B X. { F } ) e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |