| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curf2ndf.q |
|- Q = ( D FuncCat D ) |
| 2 |
|
curf2ndf.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
curf2ndf.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
df-ov |
|- ( x ( 1st ` ( C 2ndF D ) ) y ) = ( ( 1st ` ( C 2ndF D ) ) ` <. x , y >. ) |
| 5 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 8 |
5 6 7
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
| 9 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 10 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> C e. Cat ) |
| 11 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> D e. Cat ) |
| 12 |
|
eqid |
|- ( C 2ndF D ) = ( C 2ndF D ) |
| 13 |
|
opelxpi |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 14 |
13
|
adantll |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 15 |
5 8 9 10 11 12 14
|
2ndf1 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( C 2ndF D ) ) ` <. x , y >. ) = ( 2nd ` <. x , y >. ) ) |
| 16 |
|
vex |
|- x e. _V |
| 17 |
|
vex |
|- y e. _V |
| 18 |
16 17
|
op2nd |
|- ( 2nd ` <. x , y >. ) = y |
| 19 |
15 18
|
eqtrdi |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( C 2ndF D ) ) ` <. x , y >. ) = y ) |
| 20 |
4 19
|
eqtrid |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( x ( 1st ` ( C 2ndF D ) ) y ) = y ) |
| 21 |
20
|
mpteq2dva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) = ( y e. ( Base ` D ) |-> y ) ) |
| 22 |
|
mptresid |
|- ( _I |` ( Base ` D ) ) = ( y e. ( Base ` D ) |-> y ) |
| 23 |
21 22
|
eqtr4di |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) = ( _I |` ( Base ` D ) ) ) |
| 24 |
|
df-ov |
|- ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) = ( ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) ` <. ( ( Id ` C ) ` x ) , f >. ) |
| 25 |
10
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> C e. Cat ) |
| 26 |
11
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> D e. Cat ) |
| 27 |
14
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 28 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> x e. ( Base ` C ) ) |
| 29 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> z e. ( Base ` D ) ) |
| 30 |
28 29
|
opelxpd |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. x , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 31 |
5 8 9 25 26 12 27 30
|
2ndf2 |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) = ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ) |
| 32 |
31
|
fveq1d |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) ` <. ( ( Id ` C ) ` x ) , f >. ) = ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) ) |
| 33 |
24 32
|
eqtrid |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) = ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) ) |
| 34 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 35 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 36 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 37 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 38 |
6 34 35 36 37
|
catidcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 39 |
38
|
ad5ant12 |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 40 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> f e. ( y ( Hom ` D ) z ) ) |
| 41 |
39 40
|
opelxpd |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. ( ( Id ` C ) ` x ) , f >. e. ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) z ) ) ) |
| 42 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 43 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> y e. ( Base ` D ) ) |
| 44 |
5 6 7 34 42 28 43 28 29 9
|
xpchom2 |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) = ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) z ) ) ) |
| 45 |
41 44
|
eleqtrrd |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> <. ( ( Id ` C ) ` x ) , f >. e. ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) |
| 46 |
45
|
fvresd |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) = ( 2nd ` <. ( ( Id ` C ) ` x ) , f >. ) ) |
| 47 |
|
fvex |
|- ( ( Id ` C ) ` x ) e. _V |
| 48 |
|
vex |
|- f e. _V |
| 49 |
47 48
|
op2nd |
|- ( 2nd ` <. ( ( Id ` C ) ` x ) , f >. ) = f |
| 50 |
46 49
|
eqtrdi |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( 2nd |` ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , z >. ) ) ` <. ( ( Id ` C ) ` x ) , f >. ) = f ) |
| 51 |
33 50
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) /\ f e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) = f ) |
| 52 |
51
|
mpteq2dva |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) -> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) = ( f e. ( y ( Hom ` D ) z ) |-> f ) ) |
| 53 |
|
mptresid |
|- ( _I |` ( y ( Hom ` D ) z ) ) = ( f e. ( y ( Hom ` D ) z ) |-> f ) |
| 54 |
52 53
|
eqtr4di |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) /\ z e. ( Base ` D ) ) -> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) = ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 55 |
54
|
3impa |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) /\ z e. ( Base ` D ) ) -> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) = ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 56 |
55
|
mpoeq3dva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( _I |` ( y ( Hom ` D ) z ) ) ) ) |
| 57 |
|
fveq2 |
|- ( u = <. y , z >. -> ( ( Hom ` D ) ` u ) = ( ( Hom ` D ) ` <. y , z >. ) ) |
| 58 |
|
df-ov |
|- ( y ( Hom ` D ) z ) = ( ( Hom ` D ) ` <. y , z >. ) |
| 59 |
57 58
|
eqtr4di |
|- ( u = <. y , z >. -> ( ( Hom ` D ) ` u ) = ( y ( Hom ` D ) z ) ) |
| 60 |
59
|
reseq2d |
|- ( u = <. y , z >. -> ( _I |` ( ( Hom ` D ) ` u ) ) = ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 61 |
60
|
mpompt |
|- ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( _I |` ( y ( Hom ` D ) z ) ) ) |
| 62 |
56 61
|
eqtr4di |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) = ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) ) |
| 63 |
23 62
|
opeq12d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) >. = <. ( _I |` ( Base ` D ) ) , ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) >. ) |
| 64 |
|
eqid |
|- ( <. C , D >. curryF ( C 2ndF D ) ) = ( <. C , D >. curryF ( C 2ndF D ) ) |
| 65 |
3
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 66 |
5 2 3 12
|
2ndfcl |
|- ( ph -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 68 |
|
eqid |
|- ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) |
| 69 |
64 6 36 65 67 7 37 68 42 35
|
curf1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = <. ( y e. ( Base ` D ) |-> ( x ( 1st ` ( C 2ndF D ) ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( f e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` ( C 2ndF D ) ) <. x , z >. ) f ) ) ) >. ) |
| 70 |
|
eqid |
|- ( idFunc ` D ) = ( idFunc ` D ) |
| 71 |
70 7 65 42
|
idfuval |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( idFunc ` D ) = <. ( _I |` ( Base ` D ) ) , ( u e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( _I |` ( ( Hom ` D ) ` u ) ) ) >. ) |
| 72 |
63 69 71
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = ( idFunc ` D ) ) |
| 73 |
|
eqid |
|- ( Q DiagFunc C ) = ( Q DiagFunc C ) |
| 74 |
1 3 3
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> Q e. Cat ) |
| 76 |
1
|
fucbas |
|- ( D Func D ) = ( Base ` Q ) |
| 77 |
70
|
idfucl |
|- ( D e. Cat -> ( idFunc ` D ) e. ( D Func D ) ) |
| 78 |
3 77
|
syl |
|- ( ph -> ( idFunc ` D ) e. ( D Func D ) ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( idFunc ` D ) e. ( D Func D ) ) |
| 80 |
|
eqid |
|- ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) = ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) |
| 81 |
73 75 36 76 79 80 6 37
|
diag11 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) = ( idFunc ` D ) ) |
| 82 |
72 81
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) = ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ) |
| 83 |
82
|
mpteq2dva |
|- ( ph -> ( x e. ( Base ` C ) |-> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ) ) |
| 84 |
|
relfunc |
|- Rel ( C Func Q ) |
| 85 |
64 1 2 3 66
|
curfcl |
|- ( ph -> ( <. C , D >. curryF ( C 2ndF D ) ) e. ( C Func Q ) ) |
| 86 |
|
1st2ndbr |
|- ( ( Rel ( C Func Q ) /\ ( <. C , D >. curryF ( C 2ndF D ) ) e. ( C Func Q ) ) -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ( C Func Q ) ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ) |
| 87 |
84 85 86
|
sylancr |
|- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ( C Func Q ) ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ) |
| 88 |
6 76 87
|
funcf1 |
|- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) : ( Base ` C ) --> ( D Func D ) ) |
| 89 |
88
|
feqmptd |
|- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) ) ) |
| 90 |
73 74 2 76 78 80
|
diag1cl |
|- ( ph -> ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) e. ( C Func Q ) ) |
| 91 |
|
1st2ndbr |
|- ( ( Rel ( C Func Q ) /\ ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) e. ( C Func Q ) ) -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ( C Func Q ) ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 92 |
84 90 91
|
sylancr |
|- ( ph -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ( C Func Q ) ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 93 |
6 76 92
|
funcf1 |
|- ( ph -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) : ( Base ` C ) --> ( D Func D ) ) |
| 94 |
93
|
feqmptd |
|- ( ph -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ) ) |
| 95 |
83 89 94
|
3eqtr4d |
|- ( ph -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 96 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> D e. Cat ) |
| 97 |
70 7 96
|
idfu1st |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( idFunc ` D ) ) = ( _I |` ( Base ` D ) ) ) |
| 98 |
97
|
coeq2d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( Id ` D ) o. ( 1st ` ( idFunc ` D ) ) ) = ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) ) |
| 99 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
| 100 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 101 |
78
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( idFunc ` D ) e. ( D Func D ) ) |
| 102 |
1 99 100 101
|
fucid |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( Id ` Q ) ` ( idFunc ` D ) ) = ( ( Id ` D ) o. ( 1st ` ( idFunc ` D ) ) ) ) |
| 103 |
7 100
|
cidfn |
|- ( D e. Cat -> ( Id ` D ) Fn ( Base ` D ) ) |
| 104 |
96 103
|
syl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( Id ` D ) Fn ( Base ` D ) ) |
| 105 |
|
dffn2 |
|- ( ( Id ` D ) Fn ( Base ` D ) <-> ( Id ` D ) : ( Base ` D ) --> _V ) |
| 106 |
104 105
|
sylib |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( Id ` D ) : ( Base ` D ) --> _V ) |
| 107 |
106
|
feqmptd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( Id ` D ) = ( z e. ( Base ` D ) |-> ( ( Id ` D ) ` z ) ) ) |
| 108 |
|
fcoi1 |
|- ( ( Id ` D ) : ( Base ` D ) --> _V -> ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) = ( Id ` D ) ) |
| 109 |
106 108
|
syl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) = ( Id ` D ) ) |
| 110 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> C e. Cat ) |
| 111 |
110
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> C e. Cat ) |
| 112 |
96
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> D e. Cat ) |
| 113 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
| 114 |
|
opelxpi |
|- ( ( x e. ( Base ` C ) /\ z e. ( Base ` D ) ) -> <. x , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 115 |
113 114
|
sylan |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. x , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 116 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
| 117 |
|
opelxpi |
|- ( ( y e. ( Base ` C ) /\ z e. ( Base ` D ) ) -> <. y , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 118 |
116 117
|
sylan |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. y , z >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 119 |
5 8 9 111 112 12 115 118
|
2ndf2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) = ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ) |
| 120 |
119
|
oveqd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) ) |
| 121 |
|
df-ov |
|- ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) = ( ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ` <. f , ( ( Id ` D ) ` z ) >. ) |
| 122 |
|
simplr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 123 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> z e. ( Base ` D ) ) |
| 124 |
7 42 100 112 123
|
catidcl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( Id ` D ) ` z ) e. ( z ( Hom ` D ) z ) ) |
| 125 |
122 124
|
opelxpd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` z ) >. e. ( ( x ( Hom ` C ) y ) X. ( z ( Hom ` D ) z ) ) ) |
| 126 |
113
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
| 127 |
116
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> y e. ( Base ` C ) ) |
| 128 |
5 6 7 34 42 126 123 127 123 9
|
xpchom2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) = ( ( x ( Hom ` C ) y ) X. ( z ( Hom ` D ) z ) ) ) |
| 129 |
125 128
|
eleqtrrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` z ) >. e. ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) |
| 130 |
129
|
fvresd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ` <. f , ( ( Id ` D ) ` z ) >. ) = ( 2nd ` <. f , ( ( Id ` D ) ` z ) >. ) ) |
| 131 |
121 130
|
eqtrid |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) = ( 2nd ` <. f , ( ( Id ` D ) ` z ) >. ) ) |
| 132 |
|
fvex |
|- ( ( Id ` D ) ` z ) e. _V |
| 133 |
48 132
|
op2nd |
|- ( 2nd ` <. f , ( ( Id ` D ) ` z ) >. ) = ( ( Id ` D ) ` z ) |
| 134 |
131 133
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( 2nd |` ( <. x , z >. ( Hom ` ( C Xc. D ) ) <. y , z >. ) ) ( ( Id ` D ) ` z ) ) = ( ( Id ` D ) ` z ) ) |
| 135 |
120 134
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( ( Id ` D ) ` z ) ) |
| 136 |
135
|
mpteq2dva |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( z e. ( Base ` D ) |-> ( ( Id ` D ) ` z ) ) ) |
| 137 |
107 109 136
|
3eqtr4rd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( ( Id ` D ) o. ( _I |` ( Base ` D ) ) ) ) |
| 138 |
98 102 137
|
3eqtr4rd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( ( Id ` Q ) ` ( idFunc ` D ) ) ) |
| 139 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 140 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 141 |
|
eqid |
|- ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) = ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) |
| 142 |
64 6 110 96 139 7 34 100 113 116 140 141
|
curf2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) = ( z e. ( Base ` D ) |-> ( f ( <. x , z >. ( 2nd ` ( C 2ndF D ) ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) |
| 143 |
74
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> Q e. Cat ) |
| 144 |
73 143 110 76 101 80 6 113 34 99 116 140
|
diag12 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) = ( ( Id ` Q ) ` ( idFunc ` D ) ) ) |
| 145 |
138 142 144
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) = ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) ) |
| 146 |
145
|
mpteq2dva |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) ) ) |
| 147 |
|
eqid |
|- ( D Nat D ) = ( D Nat D ) |
| 148 |
1 147
|
fuchom |
|- ( D Nat D ) = ( Hom ` Q ) |
| 149 |
87
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ( C Func Q ) ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ) |
| 150 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
| 151 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 152 |
6 34 148 149 150 151
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` x ) ( D Nat D ) ( ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) ` y ) ) ) |
| 153 |
152
|
feqmptd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ` f ) ) ) |
| 154 |
92
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ( C Func Q ) ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 155 |
6 34 148 154 150 151
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` x ) ( D Nat D ) ( ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ` y ) ) ) |
| 156 |
155
|
feqmptd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ` f ) ) ) |
| 157 |
146 153 156
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) = ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) |
| 158 |
157
|
3impb |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) = ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) |
| 159 |
158
|
mpoeq3dva |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) ) |
| 160 |
6 87
|
funcfn2 |
|- ( ph -> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 161 |
|
fnov |
|- ( ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ) ) |
| 162 |
160 161
|
sylib |
|- ( ph -> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) y ) ) ) |
| 163 |
6 92
|
funcfn2 |
|- ( ph -> ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 164 |
|
fnov |
|- ( ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) ) |
| 165 |
163 164
|
sylib |
|- ( ph -> ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) y ) ) ) |
| 166 |
159 162 165
|
3eqtr4d |
|- ( ph -> ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) = ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) ) |
| 167 |
95 166
|
opeq12d |
|- ( ph -> <. ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) , ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) >. = <. ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) , ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) >. ) |
| 168 |
|
1st2nd |
|- ( ( Rel ( C Func Q ) /\ ( <. C , D >. curryF ( C 2ndF D ) ) e. ( C Func Q ) ) -> ( <. C , D >. curryF ( C 2ndF D ) ) = <. ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) , ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) >. ) |
| 169 |
84 85 168
|
sylancr |
|- ( ph -> ( <. C , D >. curryF ( C 2ndF D ) ) = <. ( 1st ` ( <. C , D >. curryF ( C 2ndF D ) ) ) , ( 2nd ` ( <. C , D >. curryF ( C 2ndF D ) ) ) >. ) |
| 170 |
|
1st2nd |
|- ( ( Rel ( C Func Q ) /\ ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) e. ( C Func Q ) ) -> ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) = <. ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) , ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) >. ) |
| 171 |
84 90 170
|
sylancr |
|- ( ph -> ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) = <. ( 1st ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) , ( 2nd ` ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) >. ) |
| 172 |
167 169 171
|
3eqtr4d |
|- ( ph -> ( <. C , D >. curryF ( C 2ndF D ) ) = ( ( 1st ` ( Q DiagFunc C ) ) ` ( idFunc ` D ) ) ) |