Step |
Hyp |
Ref |
Expression |
1 |
|
curf2ndf.q |
⊢ 𝑄 = ( 𝐷 FuncCat 𝐷 ) |
2 |
|
curf2ndf.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
3 |
|
curf2ndf.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
4 |
|
df-ov |
⊢ ( 𝑥 ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) 𝑦 ) = ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) |
5 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
8 |
5 6 7
|
xpcbas |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
9 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) |
10 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
11 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
12 |
|
eqid |
⊢ ( 𝐶 2ndF 𝐷 ) = ( 𝐶 2ndF 𝐷 ) |
13 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
15 |
5 8 9 10 11 12 14
|
2ndf1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) ) |
16 |
|
vex |
⊢ 𝑥 ∈ V |
17 |
|
vex |
⊢ 𝑦 ∈ V |
18 |
16 17
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 |
19 |
15 18
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 ) |
20 |
4 19
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑥 ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) 𝑦 ) = 𝑦 ) |
21 |
20
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) 𝑦 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ 𝑦 ) ) |
22 |
|
mptresid |
⊢ ( I ↾ ( Base ‘ 𝐷 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ 𝑦 ) |
23 |
21 22
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) 𝑦 ) ) = ( I ↾ ( Base ‘ 𝐷 ) ) ) |
24 |
|
df-ov |
⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) |
25 |
10
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝐶 ∈ Cat ) |
26 |
11
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝐷 ∈ Cat ) |
27 |
14
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
28 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
29 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) ) |
30 |
28 29
|
opelxpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 〈 𝑥 , 𝑧 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
31 |
5 8 9 25 26 12 27 30
|
2ndf2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) = ( 2nd ↾ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ) ) |
32 |
31
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) = ( ( 2nd ↾ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) ) |
33 |
24 32
|
eqtrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) = ( ( 2nd ↾ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) ) |
34 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
35 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
36 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
38 |
6 34 35 36 37
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
39 |
38
|
ad5ant12 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
40 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
41 |
39 40
|
opelxpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
42 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
43 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
44 |
5 6 7 34 42 28 43 28 29 9
|
xpchom2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
45 |
41 44
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ∈ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ) |
46 |
45
|
fvresd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 2nd ↾ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) = ( 2nd ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) ) |
47 |
|
fvex |
⊢ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ V |
48 |
|
vex |
⊢ 𝑓 ∈ V |
49 |
47 48
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) = 𝑓 |
50 |
46 49
|
eqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 2nd ↾ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑓 〉 ) = 𝑓 ) |
51 |
33 50
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) = 𝑓 ) |
52 |
51
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) ) = ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ 𝑓 ) ) |
53 |
|
mptresid |
⊢ ( I ↾ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) = ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ 𝑓 ) |
54 |
52 53
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) ) = ( I ↾ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
55 |
54
|
3impa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) ) = ( I ↾ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
56 |
55
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( I ↾ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) ) |
57 |
|
fveq2 |
⊢ ( 𝑢 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 𝑦 , 𝑧 〉 ) ) |
58 |
|
df-ov |
⊢ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 𝑦 , 𝑧 〉 ) |
59 |
57 58
|
eqtr4di |
⊢ ( 𝑢 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
60 |
59
|
reseq2d |
⊢ ( 𝑢 = 〈 𝑦 , 𝑧 〉 → ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) = ( I ↾ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
61 |
60
|
mpompt |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( I ↾ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
62 |
56 61
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) ) ) |
63 |
23 62
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐷 ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) ) 〉 ) |
64 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) |
65 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
66 |
5 2 3 12
|
2ndfcl |
⊢ ( 𝜑 → ( 𝐶 2ndF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐷 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐶 2ndF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐷 ) ) |
68 |
|
eqid |
⊢ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) |
69 |
64 6 36 65 67 7 37 68 42 35
|
curf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) = 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑥 , 𝑧 〉 ) 𝑓 ) ) ) 〉 ) |
70 |
|
eqid |
⊢ ( idfunc ‘ 𝐷 ) = ( idfunc ‘ 𝐷 ) |
71 |
70 7 65 42
|
idfuval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( idfunc ‘ 𝐷 ) = 〈 ( I ↾ ( Base ‘ 𝐷 ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) ) 〉 ) |
72 |
63 69 71
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) = ( idfunc ‘ 𝐷 ) ) |
73 |
|
eqid |
⊢ ( 𝑄 Δfunc 𝐶 ) = ( 𝑄 Δfunc 𝐶 ) |
74 |
1 3 3
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑄 ∈ Cat ) |
76 |
1
|
fucbas |
⊢ ( 𝐷 Func 𝐷 ) = ( Base ‘ 𝑄 ) |
77 |
70
|
idfucl |
⊢ ( 𝐷 ∈ Cat → ( idfunc ‘ 𝐷 ) ∈ ( 𝐷 Func 𝐷 ) ) |
78 |
3 77
|
syl |
⊢ ( 𝜑 → ( idfunc ‘ 𝐷 ) ∈ ( 𝐷 Func 𝐷 ) ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( idfunc ‘ 𝐷 ) ∈ ( 𝐷 Func 𝐷 ) ) |
80 |
|
eqid |
⊢ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) = ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) |
81 |
73 75 36 76 79 80 6 37
|
diag11 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ‘ 𝑥 ) = ( idfunc ‘ 𝐷 ) ) |
82 |
72 81
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) = ( ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ‘ 𝑥 ) ) |
83 |
82
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ‘ 𝑥 ) ) ) |
84 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝑄 ) |
85 |
64 1 2 3 66
|
curfcl |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ∈ ( 𝐶 Func 𝑄 ) ) |
86 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝑄 ) ∧ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ∈ ( 𝐶 Func 𝑄 ) ) → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ) |
87 |
84 85 86
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ) |
88 |
6 76 87
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) : ( Base ‘ 𝐶 ) ⟶ ( 𝐷 Func 𝐷 ) ) |
89 |
88
|
feqmptd |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) ) ) |
90 |
73 74 2 76 78 80
|
diag1cl |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ∈ ( 𝐶 Func 𝑄 ) ) |
91 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝑄 ) ∧ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ∈ ( 𝐶 Func 𝑄 ) ) → ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ) |
92 |
84 90 91
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ) |
93 |
6 76 92
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) : ( Base ‘ 𝐶 ) ⟶ ( 𝐷 Func 𝐷 ) ) |
94 |
93
|
feqmptd |
⊢ ( 𝜑 → ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ‘ 𝑥 ) ) ) |
95 |
83 89 94
|
3eqtr4d |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) = ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ) |
96 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐷 ∈ Cat ) |
97 |
70 7 96
|
idfu1st |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 1st ‘ ( idfunc ‘ 𝐷 ) ) = ( I ↾ ( Base ‘ 𝐷 ) ) ) |
98 |
97
|
coeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ ( idfunc ‘ 𝐷 ) ) ) = ( ( Id ‘ 𝐷 ) ∘ ( I ↾ ( Base ‘ 𝐷 ) ) ) ) |
99 |
|
eqid |
⊢ ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 ) |
100 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
101 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( idfunc ‘ 𝐷 ) ∈ ( 𝐷 Func 𝐷 ) ) |
102 |
1 99 100 101
|
fucid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( Id ‘ 𝑄 ) ‘ ( idfunc ‘ 𝐷 ) ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ ( idfunc ‘ 𝐷 ) ) ) ) |
103 |
7 100
|
cidfn |
⊢ ( 𝐷 ∈ Cat → ( Id ‘ 𝐷 ) Fn ( Base ‘ 𝐷 ) ) |
104 |
96 103
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( Id ‘ 𝐷 ) Fn ( Base ‘ 𝐷 ) ) |
105 |
|
dffn2 |
⊢ ( ( Id ‘ 𝐷 ) Fn ( Base ‘ 𝐷 ) ↔ ( Id ‘ 𝐷 ) : ( Base ‘ 𝐷 ) ⟶ V ) |
106 |
104 105
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( Id ‘ 𝐷 ) : ( Base ‘ 𝐷 ) ⟶ V ) |
107 |
106
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( Id ‘ 𝐷 ) = ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) |
108 |
|
fcoi1 |
⊢ ( ( Id ‘ 𝐷 ) : ( Base ‘ 𝐷 ) ⟶ V → ( ( Id ‘ 𝐷 ) ∘ ( I ↾ ( Base ‘ 𝐷 ) ) ) = ( Id ‘ 𝐷 ) ) |
109 |
106 108
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( Id ‘ 𝐷 ) ∘ ( I ↾ ( Base ‘ 𝐷 ) ) ) = ( Id ‘ 𝐷 ) ) |
110 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐶 ∈ Cat ) |
111 |
110
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
112 |
96
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
113 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
114 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑧 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
115 |
113 114
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑧 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
116 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
117 |
|
opelxpi |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
118 |
116 117
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
119 |
5 8 9 111 112 12 115 118
|
2ndf2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) = ( 2nd ↾ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) ) |
120 |
119
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) = ( 𝑓 ( 2nd ↾ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) |
121 |
|
df-ov |
⊢ ( 𝑓 ( 2nd ↾ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) = ( ( 2nd ↾ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) 〉 ) |
122 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
123 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) ) |
124 |
7 42 100 112 123
|
catidcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
125 |
122 124
|
opelxpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
126 |
113
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
127 |
116
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
128 |
5 6 7 34 42 126 123 127 123 9
|
xpchom2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
129 |
125 128
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) 〉 ∈ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) |
130 |
129
|
fvresd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( ( 2nd ↾ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) 〉 ) = ( 2nd ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) 〉 ) ) |
131 |
121 130
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑓 ( 2nd ↾ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) = ( 2nd ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) 〉 ) ) |
132 |
|
fvex |
⊢ ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ∈ V |
133 |
48 132
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) 〉 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) |
134 |
131 133
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑓 ( 2nd ↾ ( 〈 𝑥 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) = ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) |
135 |
120 134
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) = ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) |
136 |
135
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) |
137 |
107 109 136
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) = ( ( Id ‘ 𝐷 ) ∘ ( I ↾ ( Base ‘ 𝐷 ) ) ) ) |
138 |
98 102 137
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) = ( ( Id ‘ 𝑄 ) ‘ ( idfunc ‘ 𝐷 ) ) ) |
139 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝐶 2ndF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐷 ) ) |
140 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
141 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) |
142 |
64 6 110 96 139 7 34 100 113 116 140 141
|
curf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) = ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑓 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) |
143 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑄 ∈ Cat ) |
144 |
73 143 110 76 101 80 6 113 34 99 116 140
|
diag12 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) = ( ( Id ‘ 𝑄 ) ‘ ( idfunc ‘ 𝐷 ) ) ) |
145 |
138 142 144
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) ) |
146 |
145
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) ) = ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) ) ) |
147 |
|
eqid |
⊢ ( 𝐷 Nat 𝐷 ) = ( 𝐷 Nat 𝐷 ) |
148 |
1 147
|
fuchom |
⊢ ( 𝐷 Nat 𝐷 ) = ( Hom ‘ 𝑄 ) |
149 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ) |
150 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
151 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
152 |
6 34 148 149 150 151
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑥 ) ( 𝐷 Nat 𝐷 ) ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) ‘ 𝑦 ) ) ) |
153 |
152
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) = ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) ) ) |
154 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ) |
155 |
6 34 148 154 150 151
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ‘ 𝑥 ) ( 𝐷 Nat 𝐷 ) ( ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ‘ 𝑦 ) ) ) |
156 |
155
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) = ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ‘ 𝑓 ) ) ) |
157 |
146 153 156
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) = ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ) |
158 |
157
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) = ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ) |
159 |
158
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ) ) |
160 |
6 87
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
161 |
|
fnov |
⊢ ( ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ) ) |
162 |
160 161
|
sylib |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 𝑦 ) ) ) |
163 |
6 92
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
164 |
|
fnov |
⊢ ( ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ) ) |
165 |
163 164
|
sylib |
⊢ ( 𝜑 → ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 𝑦 ) ) ) |
166 |
159 162 165
|
3eqtr4d |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) = ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) ) |
167 |
95 166
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) , ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 〉 = 〈 ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) , ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 〉 ) |
168 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func 𝑄 ) ∧ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ∈ ( 𝐶 Func 𝑄 ) ) → ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) = 〈 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) , ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 〉 ) |
169 |
84 85 168
|
sylancr |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) = 〈 ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) , ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) ) 〉 ) |
170 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func 𝑄 ) ∧ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ∈ ( 𝐶 Func 𝑄 ) ) → ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) = 〈 ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) , ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 〉 ) |
171 |
84 90 170
|
sylancr |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) = 〈 ( 1st ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) , ( 2nd ‘ ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) 〉 ) |
172 |
167 169 171
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 2ndF 𝐷 ) ) = ( ( 1st ‘ ( 𝑄 Δfunc 𝐶 ) ) ‘ ( idfunc ‘ 𝐷 ) ) ) |