Metamath Proof Explorer


Theorem ad5ant12

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypothesis ad5ant2.1 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion ad5ant12 ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 ad5ant2.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 1 ad3antrrr ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜒 )