Metamath Proof Explorer


Theorem curf2ndf

Description: As shown in diagval , the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is x e. C |-> ( y e. D |-> y ) , which is a constant functor of the identity functor at D . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses curf2ndf.q Q = D FuncCat D
curf2ndf.c φ C Cat
curf2ndf.d φ D Cat
Assertion curf2ndf φ C D curry F C 2 nd F D = 1 st Q Δ func C id func D

Proof

Step Hyp Ref Expression
1 curf2ndf.q Q = D FuncCat D
2 curf2ndf.c φ C Cat
3 curf2ndf.d φ D Cat
4 df-ov x 1 st C 2 nd F D y = 1 st C 2 nd F D x y
5 eqid C × c D = C × c D
6 eqid Base C = Base C
7 eqid Base D = Base D
8 5 6 7 xpcbas Base C × Base D = Base C × c D
9 eqid Hom C × c D = Hom C × c D
10 2 ad2antrr φ x Base C y Base D C Cat
11 3 ad2antrr φ x Base C y Base D D Cat
12 eqid C 2 nd F D = C 2 nd F D
13 opelxpi x Base C y Base D x y Base C × Base D
14 13 adantll φ x Base C y Base D x y Base C × Base D
15 5 8 9 10 11 12 14 2ndf1 φ x Base C y Base D 1 st C 2 nd F D x y = 2 nd x y
16 vex x V
17 vex y V
18 16 17 op2nd 2 nd x y = y
19 15 18 eqtrdi φ x Base C y Base D 1 st C 2 nd F D x y = y
20 4 19 syl5eq φ x Base C y Base D x 1 st C 2 nd F D y = y
21 20 mpteq2dva φ x Base C y Base D x 1 st C 2 nd F D y = y Base D y
22 mptresid I Base D = y Base D y
23 21 22 eqtr4di φ x Base C y Base D x 1 st C 2 nd F D y = I Base D
24 df-ov Id C x x y 2 nd C 2 nd F D x z f = x y 2 nd C 2 nd F D x z Id C x f
25 10 ad2antrr φ x Base C y Base D z Base D f y Hom D z C Cat
26 11 ad2antrr φ x Base C y Base D z Base D f y Hom D z D Cat
27 14 ad2antrr φ x Base C y Base D z Base D f y Hom D z x y Base C × Base D
28 simp-4r φ x Base C y Base D z Base D f y Hom D z x Base C
29 simplr φ x Base C y Base D z Base D f y Hom D z z Base D
30 28 29 opelxpd φ x Base C y Base D z Base D f y Hom D z x z Base C × Base D
31 5 8 9 25 26 12 27 30 2ndf2 φ x Base C y Base D z Base D f y Hom D z x y 2 nd C 2 nd F D x z = 2 nd x y Hom C × c D x z
32 31 fveq1d φ x Base C y Base D z Base D f y Hom D z x y 2 nd C 2 nd F D x z Id C x f = 2 nd x y Hom C × c D x z Id C x f
33 24 32 syl5eq φ x Base C y Base D z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = 2 nd x y Hom C × c D x z Id C x f
34 eqid Hom C = Hom C
35 eqid Id C = Id C
36 2 adantr φ x Base C C Cat
37 simpr φ x Base C x Base C
38 6 34 35 36 37 catidcl φ x Base C Id C x x Hom C x
39 38 ad5ant12 φ x Base C y Base D z Base D f y Hom D z Id C x x Hom C x
40 simpr φ x Base C y Base D z Base D f y Hom D z f y Hom D z
41 39 40 opelxpd φ x Base C y Base D z Base D f y Hom D z Id C x f x Hom C x × y Hom D z
42 eqid Hom D = Hom D
43 simpllr φ x Base C y Base D z Base D f y Hom D z y Base D
44 5 6 7 34 42 28 43 28 29 9 xpchom2 φ x Base C y Base D z Base D f y Hom D z x y Hom C × c D x z = x Hom C x × y Hom D z
45 41 44 eleqtrrd φ x Base C y Base D z Base D f y Hom D z Id C x f x y Hom C × c D x z
46 45 fvresd φ x Base C y Base D z Base D f y Hom D z 2 nd x y Hom C × c D x z Id C x f = 2 nd Id C x f
47 fvex Id C x V
48 vex f V
49 47 48 op2nd 2 nd Id C x f = f
50 46 49 eqtrdi φ x Base C y Base D z Base D f y Hom D z 2 nd x y Hom C × c D x z Id C x f = f
51 33 50 eqtrd φ x Base C y Base D z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = f
52 51 mpteq2dva φ x Base C y Base D z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = f y Hom D z f
53 mptresid I y Hom D z = f y Hom D z f
54 52 53 eqtr4di φ x Base C y Base D z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = I y Hom D z
55 54 3impa φ x Base C y Base D z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = I y Hom D z
56 55 mpoeq3dva φ x Base C y Base D , z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = y Base D , z Base D I y Hom D z
57 fveq2 u = y z Hom D u = Hom D y z
58 df-ov y Hom D z = Hom D y z
59 57 58 eqtr4di u = y z Hom D u = y Hom D z
60 59 reseq2d u = y z I Hom D u = I y Hom D z
61 60 mpompt u Base D × Base D I Hom D u = y Base D , z Base D I y Hom D z
62 56 61 eqtr4di φ x Base C y Base D , z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = u Base D × Base D I Hom D u
63 23 62 opeq12d φ x Base C y Base D x 1 st C 2 nd F D y y Base D , z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f = I Base D u Base D × Base D I Hom D u
64 eqid C D curry F C 2 nd F D = C D curry F C 2 nd F D
65 3 adantr φ x Base C D Cat
66 5 2 3 12 2ndfcl φ C 2 nd F D C × c D Func D
67 66 adantr φ x Base C C 2 nd F D C × c D Func D
68 eqid 1 st C D curry F C 2 nd F D x = 1 st C D curry F C 2 nd F D x
69 64 6 36 65 67 7 37 68 42 35 curf1 φ x Base C 1 st C D curry F C 2 nd F D x = y Base D x 1 st C 2 nd F D y y Base D , z Base D f y Hom D z Id C x x y 2 nd C 2 nd F D x z f
70 eqid id func D = id func D
71 70 7 65 42 idfuval φ x Base C id func D = I Base D u Base D × Base D I Hom D u
72 63 69 71 3eqtr4d φ x Base C 1 st C D curry F C 2 nd F D x = id func D
73 eqid Q Δ func C = Q Δ func C
74 1 3 3 fuccat φ Q Cat
75 74 adantr φ x Base C Q Cat
76 1 fucbas D Func D = Base Q
77 70 idfucl D Cat id func D D Func D
78 3 77 syl φ id func D D Func D
79 78 adantr φ x Base C id func D D Func D
80 eqid 1 st Q Δ func C id func D = 1 st Q Δ func C id func D
81 73 75 36 76 79 80 6 37 diag11 φ x Base C 1 st 1 st Q Δ func C id func D x = id func D
82 72 81 eqtr4d φ x Base C 1 st C D curry F C 2 nd F D x = 1 st 1 st Q Δ func C id func D x
83 82 mpteq2dva φ x Base C 1 st C D curry F C 2 nd F D x = x Base C 1 st 1 st Q Δ func C id func D x
84 relfunc Rel C Func Q
85 64 1 2 3 66 curfcl φ C D curry F C 2 nd F D C Func Q
86 1st2ndbr Rel C Func Q C D curry F C 2 nd F D C Func Q 1 st C D curry F C 2 nd F D C Func Q 2 nd C D curry F C 2 nd F D
87 84 85 86 sylancr φ 1 st C D curry F C 2 nd F D C Func Q 2 nd C D curry F C 2 nd F D
88 6 76 87 funcf1 φ 1 st C D curry F C 2 nd F D : Base C D Func D
89 88 feqmptd φ 1 st C D curry F C 2 nd F D = x Base C 1 st C D curry F C 2 nd F D x
90 73 74 2 76 78 80 diag1cl φ 1 st Q Δ func C id func D C Func Q
91 1st2ndbr Rel C Func Q 1 st Q Δ func C id func D C Func Q 1 st 1 st Q Δ func C id func D C Func Q 2 nd 1 st Q Δ func C id func D
92 84 90 91 sylancr φ 1 st 1 st Q Δ func C id func D C Func Q 2 nd 1 st Q Δ func C id func D
93 6 76 92 funcf1 φ 1 st 1 st Q Δ func C id func D : Base C D Func D
94 93 feqmptd φ 1 st 1 st Q Δ func C id func D = x Base C 1 st 1 st Q Δ func C id func D x
95 83 89 94 3eqtr4d φ 1 st C D curry F C 2 nd F D = 1 st 1 st Q Δ func C id func D
96 3 ad2antrr φ x Base C y Base C f x Hom C y D Cat
97 70 7 96 idfu1st φ x Base C y Base C f x Hom C y 1 st id func D = I Base D
98 97 coeq2d φ x Base C y Base C f x Hom C y Id D 1 st id func D = Id D I Base D
99 eqid Id Q = Id Q
100 eqid Id D = Id D
101 78 ad2antrr φ x Base C y Base C f x Hom C y id func D D Func D
102 1 99 100 101 fucid φ x Base C y Base C f x Hom C y Id Q id func D = Id D 1 st id func D
103 7 100 cidfn D Cat Id D Fn Base D
104 96 103 syl φ x Base C y Base C f x Hom C y Id D Fn Base D
105 dffn2 Id D Fn Base D Id D : Base D V
106 104 105 sylib φ x Base C y Base C f x Hom C y Id D : Base D V
107 106 feqmptd φ x Base C y Base C f x Hom C y Id D = z Base D Id D z
108 fcoi1 Id D : Base D V Id D I Base D = Id D
109 106 108 syl φ x Base C y Base C f x Hom C y Id D I Base D = Id D
110 2 ad2antrr φ x Base C y Base C f x Hom C y C Cat
111 110 adantr φ x Base C y Base C f x Hom C y z Base D C Cat
112 96 adantr φ x Base C y Base C f x Hom C y z Base D D Cat
113 simplrl φ x Base C y Base C f x Hom C y x Base C
114 opelxpi x Base C z Base D x z Base C × Base D
115 113 114 sylan φ x Base C y Base C f x Hom C y z Base D x z Base C × Base D
116 simplrr φ x Base C y Base C f x Hom C y y Base C
117 opelxpi y Base C z Base D y z Base C × Base D
118 116 117 sylan φ x Base C y Base C f x Hom C y z Base D y z Base C × Base D
119 5 8 9 111 112 12 115 118 2ndf2 φ x Base C y Base C f x Hom C y z Base D x z 2 nd C 2 nd F D y z = 2 nd x z Hom C × c D y z
120 119 oveqd φ x Base C y Base C f x Hom C y z Base D f x z 2 nd C 2 nd F D y z Id D z = f 2 nd x z Hom C × c D y z Id D z
121 df-ov f 2 nd x z Hom C × c D y z Id D z = 2 nd x z Hom C × c D y z f Id D z
122 simplr φ x Base C y Base C f x Hom C y z Base D f x Hom C y
123 simpr φ x Base C y Base C f x Hom C y z Base D z Base D
124 7 42 100 112 123 catidcl φ x Base C y Base C f x Hom C y z Base D Id D z z Hom D z
125 122 124 opelxpd φ x Base C y Base C f x Hom C y z Base D f Id D z x Hom C y × z Hom D z
126 113 adantr φ x Base C y Base C f x Hom C y z Base D x Base C
127 116 adantr φ x Base C y Base C f x Hom C y z Base D y Base C
128 5 6 7 34 42 126 123 127 123 9 xpchom2 φ x Base C y Base C f x Hom C y z Base D x z Hom C × c D y z = x Hom C y × z Hom D z
129 125 128 eleqtrrd φ x Base C y Base C f x Hom C y z Base D f Id D z x z Hom C × c D y z
130 129 fvresd φ x Base C y Base C f x Hom C y z Base D 2 nd x z Hom C × c D y z f Id D z = 2 nd f Id D z
131 121 130 syl5eq φ x Base C y Base C f x Hom C y z Base D f 2 nd x z Hom C × c D y z Id D z = 2 nd f Id D z
132 fvex Id D z V
133 48 132 op2nd 2 nd f Id D z = Id D z
134 131 133 eqtrdi φ x Base C y Base C f x Hom C y z Base D f 2 nd x z Hom C × c D y z Id D z = Id D z
135 120 134 eqtrd φ x Base C y Base C f x Hom C y z Base D f x z 2 nd C 2 nd F D y z Id D z = Id D z
136 135 mpteq2dva φ x Base C y Base C f x Hom C y z Base D f x z 2 nd C 2 nd F D y z Id D z = z Base D Id D z
137 107 109 136 3eqtr4rd φ x Base C y Base C f x Hom C y z Base D f x z 2 nd C 2 nd F D y z Id D z = Id D I Base D
138 98 102 137 3eqtr4rd φ x Base C y Base C f x Hom C y z Base D f x z 2 nd C 2 nd F D y z Id D z = Id Q id func D
139 66 ad2antrr φ x Base C y Base C f x Hom C y C 2 nd F D C × c D Func D
140 simpr φ x Base C y Base C f x Hom C y f x Hom C y
141 eqid x 2 nd C D curry F C 2 nd F D y f = x 2 nd C D curry F C 2 nd F D y f
142 64 6 110 96 139 7 34 100 113 116 140 141 curf2 φ x Base C y Base C f x Hom C y x 2 nd C D curry F C 2 nd F D y f = z Base D f x z 2 nd C 2 nd F D y z Id D z
143 74 ad2antrr φ x Base C y Base C f x Hom C y Q Cat
144 73 143 110 76 101 80 6 113 34 99 116 140 diag12 φ x Base C y Base C f x Hom C y x 2 nd 1 st Q Δ func C id func D y f = Id Q id func D
145 138 142 144 3eqtr4d φ x Base C y Base C f x Hom C y x 2 nd C D curry F C 2 nd F D y f = x 2 nd 1 st Q Δ func C id func D y f
146 145 mpteq2dva φ x Base C y Base C f x Hom C y x 2 nd C D curry F C 2 nd F D y f = f x Hom C y x 2 nd 1 st Q Δ func C id func D y f
147 eqid D Nat D = D Nat D
148 1 147 fuchom D Nat D = Hom Q
149 87 adantr φ x Base C y Base C 1 st C D curry F C 2 nd F D C Func Q 2 nd C D curry F C 2 nd F D
150 simprl φ x Base C y Base C x Base C
151 simprr φ x Base C y Base C y Base C
152 6 34 148 149 150 151 funcf2 φ x Base C y Base C x 2 nd C D curry F C 2 nd F D y : x Hom C y 1 st C D curry F C 2 nd F D x D Nat D 1 st C D curry F C 2 nd F D y
153 152 feqmptd φ x Base C y Base C x 2 nd C D curry F C 2 nd F D y = f x Hom C y x 2 nd C D curry F C 2 nd F D y f
154 92 adantr φ x Base C y Base C 1 st 1 st Q Δ func C id func D C Func Q 2 nd 1 st Q Δ func C id func D
155 6 34 148 154 150 151 funcf2 φ x Base C y Base C x 2 nd 1 st Q Δ func C id func D y : x Hom C y 1 st 1 st Q Δ func C id func D x D Nat D 1 st 1 st Q Δ func C id func D y
156 155 feqmptd φ x Base C y Base C x 2 nd 1 st Q Δ func C id func D y = f x Hom C y x 2 nd 1 st Q Δ func C id func D y f
157 146 153 156 3eqtr4d φ x Base C y Base C x 2 nd C D curry F C 2 nd F D y = x 2 nd 1 st Q Δ func C id func D y
158 157 3impb φ x Base C y Base C x 2 nd C D curry F C 2 nd F D y = x 2 nd 1 st Q Δ func C id func D y
159 158 mpoeq3dva φ x Base C , y Base C x 2 nd C D curry F C 2 nd F D y = x Base C , y Base C x 2 nd 1 st Q Δ func C id func D y
160 6 87 funcfn2 φ 2 nd C D curry F C 2 nd F D Fn Base C × Base C
161 fnov 2 nd C D curry F C 2 nd F D Fn Base C × Base C 2 nd C D curry F C 2 nd F D = x Base C , y Base C x 2 nd C D curry F C 2 nd F D y
162 160 161 sylib φ 2 nd C D curry F C 2 nd F D = x Base C , y Base C x 2 nd C D curry F C 2 nd F D y
163 6 92 funcfn2 φ 2 nd 1 st Q Δ func C id func D Fn Base C × Base C
164 fnov 2 nd 1 st Q Δ func C id func D Fn Base C × Base C 2 nd 1 st Q Δ func C id func D = x Base C , y Base C x 2 nd 1 st Q Δ func C id func D y
165 163 164 sylib φ 2 nd 1 st Q Δ func C id func D = x Base C , y Base C x 2 nd 1 st Q Δ func C id func D y
166 159 162 165 3eqtr4d φ 2 nd C D curry F C 2 nd F D = 2 nd 1 st Q Δ func C id func D
167 95 166 opeq12d φ 1 st C D curry F C 2 nd F D 2 nd C D curry F C 2 nd F D = 1 st 1 st Q Δ func C id func D 2 nd 1 st Q Δ func C id func D
168 1st2nd Rel C Func Q C D curry F C 2 nd F D C Func Q C D curry F C 2 nd F D = 1 st C D curry F C 2 nd F D 2 nd C D curry F C 2 nd F D
169 84 85 168 sylancr φ C D curry F C 2 nd F D = 1 st C D curry F C 2 nd F D 2 nd C D curry F C 2 nd F D
170 1st2nd Rel C Func Q 1 st Q Δ func C id func D C Func Q 1 st Q Δ func C id func D = 1 st 1 st Q Δ func C id func D 2 nd 1 st Q Δ func C id func D
171 84 90 170 sylancr φ 1 st Q Δ func C id func D = 1 st 1 st Q Δ func C id func D 2 nd 1 st Q Δ func C id func D
172 167 169 171 3eqtr4d φ C D curry F C 2 nd F D = 1 st Q Δ func C id func D