Metamath Proof Explorer


Theorem cmdfval2

Description: The set of colimits of a diagram. (Contributed by Zhi Wang, 12-Nov-2025)

Ref Expression
Assertion cmdfval2 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 )

Proof

Step Hyp Ref Expression
1 cmdfval ( 𝐶 Colimit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝑓 ) )
2 1 mptrcl ( 𝑓 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) )
3 eqid ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 )
4 3 fucbas ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) )
5 4 uprcl ( 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) → ( ( 𝐶 Δfunc 𝐷 ) ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) )
6 5 simprd ( 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) )
7 oveq2 ( 𝑓 = 𝐹 → ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝑓 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) )
8 ovex ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ∈ V
9 7 1 8 fvmpt ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) → ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) )
10 9 eleq2d ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) → ( 𝑓 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) ↔ 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) )
11 2 6 10 pm5.21nii ( 𝑓 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) ↔ 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) )
12 11 eqriv ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 )