| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmdfval |
⊢ ( 𝐶 Colimit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝑓 ) ) |
| 2 |
1
|
mptrcl |
⊢ ( 𝑓 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 3 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 4 |
3
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 5 |
4
|
uprcl |
⊢ ( 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) → ( ( 𝐶 Δfunc 𝐷 ) ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) ) |
| 6 |
5
|
simprd |
⊢ ( 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝑓 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) |
| 8 |
|
ovex |
⊢ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ∈ V |
| 9 |
7 1 8
|
fvmpt |
⊢ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) → ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) → ( 𝑓 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) ↔ 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) ) |
| 11 |
2 6 10
|
pm5.21nii |
⊢ ( 𝑓 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) ↔ 𝑓 ∈ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) |
| 12 |
11
|
eqriv |
⊢ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) |