| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 2 |
|
lmdpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 3 |
|
lmdpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 |
|
lmdpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 |
|
lmdpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
lmdpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 7 |
|
lmdpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 8 |
|
lmdpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 9 |
3 4 1 2 7 8 5 6
|
funcpropd |
⊢ ( 𝜑 → ( 𝐶 Func 𝐴 ) = ( 𝐷 Func 𝐵 ) ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 11 |
10
|
oppchomfpropd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf ‘ ( oppCat ‘ 𝐴 ) ) = ( Homf ‘ ( oppCat ‘ 𝐵 ) ) ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 13 |
10 12
|
oppccomfpropd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf ‘ ( oppCat ‘ 𝐴 ) ) = ( compf ‘ ( oppCat ‘ 𝐵 ) ) ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) |
| 17 |
16
|
func1st2nd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 1st ‘ 𝑓 ) ( 𝐶 Func 𝐴 ) ( 2nd ‘ 𝑓 ) ) |
| 18 |
17
|
funcrcl2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐶 ∈ Cat ) |
| 19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐶 Func 𝐴 ) = ( 𝐷 Func 𝐵 ) ) |
| 20 |
16 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝑓 ∈ ( 𝐷 Func 𝐵 ) ) |
| 21 |
20
|
func1st2nd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 1st ‘ 𝑓 ) ( 𝐷 Func 𝐵 ) ( 2nd ‘ 𝑓 ) ) |
| 22 |
21
|
funcrcl2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐷 ∈ Cat ) |
| 23 |
17
|
funcrcl3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐴 ∈ Cat ) |
| 24 |
21
|
funcrcl3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐵 ∈ Cat ) |
| 25 |
14 15 10 12 18 22 23 24
|
fucpropd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐶 FuncCat 𝐴 ) = ( 𝐷 FuncCat 𝐵 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf ‘ ( 𝐶 FuncCat 𝐴 ) ) = ( Homf ‘ ( 𝐷 FuncCat 𝐵 ) ) ) |
| 27 |
26
|
oppchomfpropd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf ‘ ( oppCat ‘ ( 𝐶 FuncCat 𝐴 ) ) ) = ( Homf ‘ ( oppCat ‘ ( 𝐷 FuncCat 𝐵 ) ) ) ) |
| 28 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf ‘ ( 𝐶 FuncCat 𝐴 ) ) = ( compf ‘ ( 𝐷 FuncCat 𝐵 ) ) ) |
| 29 |
26 28
|
oppccomfpropd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf ‘ ( oppCat ‘ ( 𝐶 FuncCat 𝐴 ) ) ) = ( compf ‘ ( oppCat ‘ ( 𝐷 FuncCat 𝐵 ) ) ) ) |
| 30 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( oppCat ‘ 𝐴 ) ∈ V ) |
| 31 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( oppCat ‘ 𝐵 ) ∈ V ) |
| 32 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( oppCat ‘ ( 𝐶 FuncCat 𝐴 ) ) ∈ V ) |
| 33 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( oppCat ‘ ( 𝐷 FuncCat 𝐵 ) ) ∈ V ) |
| 34 |
11 13 27 29 30 31 32 33
|
uppropd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( ( oppCat ‘ 𝐴 ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐴 ) ) ) = ( ( oppCat ‘ 𝐵 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐵 ) ) ) ) |
| 35 |
10 12 14 15 23 24 18 22
|
diagpropd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐴 Δfunc 𝐶 ) = ( 𝐵 Δfunc 𝐷 ) ) |
| 36 |
35
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( oppFunc ‘ ( 𝐴 Δfunc 𝐶 ) ) = ( oppFunc ‘ ( 𝐵 Δfunc 𝐷 ) ) ) |
| 37 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝑓 = 𝑓 ) |
| 38 |
34 36 37
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( ( oppFunc ‘ ( 𝐴 Δfunc 𝐶 ) ) ( ( oppCat ‘ 𝐴 ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐴 ) ) ) 𝑓 ) = ( ( oppFunc ‘ ( 𝐵 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐵 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐵 ) ) ) 𝑓 ) ) |
| 39 |
9 38
|
mpteq12dva |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐶 Func 𝐴 ) ↦ ( ( oppFunc ‘ ( 𝐴 Δfunc 𝐶 ) ) ( ( oppCat ‘ 𝐴 ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐴 ) ) ) 𝑓 ) ) = ( 𝑓 ∈ ( 𝐷 Func 𝐵 ) ↦ ( ( oppFunc ‘ ( 𝐵 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐵 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐵 ) ) ) 𝑓 ) ) ) |
| 40 |
|
lmdfval |
⊢ ( 𝐴 Limit 𝐶 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐴 ) ↦ ( ( oppFunc ‘ ( 𝐴 Δfunc 𝐶 ) ) ( ( oppCat ‘ 𝐴 ) UP ( oppCat ‘ ( 𝐶 FuncCat 𝐴 ) ) ) 𝑓 ) ) |
| 41 |
|
lmdfval |
⊢ ( 𝐵 Limit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐵 ) ↦ ( ( oppFunc ‘ ( 𝐵 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐵 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐵 ) ) ) 𝑓 ) ) |
| 42 |
39 40 41
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐴 Limit 𝐶 ) = ( 𝐵 Limit 𝐷 ) ) |