| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
lmdpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
lmdpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
lmdpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
lmdpropd.a |
|- ( ph -> A e. V ) |
| 6 |
|
lmdpropd.b |
|- ( ph -> B e. V ) |
| 7 |
|
lmdpropd.c |
|- ( ph -> C e. V ) |
| 8 |
|
lmdpropd.d |
|- ( ph -> D e. V ) |
| 9 |
3 4 1 2 7 8 5 6
|
funcpropd |
|- ( ph -> ( C Func A ) = ( D Func B ) ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 11 |
10
|
oppchomfpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` ( oppCat ` A ) ) = ( Homf ` ( oppCat ` B ) ) ) |
| 12 |
2
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` A ) = ( comf ` B ) ) |
| 13 |
10 12
|
oppccomfpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` ( oppCat ` A ) ) = ( comf ` ( oppCat ` B ) ) ) |
| 14 |
3
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ f e. ( C Func A ) ) -> f e. ( C Func A ) ) |
| 17 |
16
|
func1st2nd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( 1st ` f ) ( C Func A ) ( 2nd ` f ) ) |
| 18 |
17
|
funcrcl2 |
|- ( ( ph /\ f e. ( C Func A ) ) -> C e. Cat ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( C Func A ) = ( D Func B ) ) |
| 20 |
16 19
|
eleqtrd |
|- ( ( ph /\ f e. ( C Func A ) ) -> f e. ( D Func B ) ) |
| 21 |
20
|
func1st2nd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( 1st ` f ) ( D Func B ) ( 2nd ` f ) ) |
| 22 |
21
|
funcrcl2 |
|- ( ( ph /\ f e. ( C Func A ) ) -> D e. Cat ) |
| 23 |
17
|
funcrcl3 |
|- ( ( ph /\ f e. ( C Func A ) ) -> A e. Cat ) |
| 24 |
21
|
funcrcl3 |
|- ( ( ph /\ f e. ( C Func A ) ) -> B e. Cat ) |
| 25 |
14 15 10 12 18 22 23 24
|
fucpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( C FuncCat A ) = ( D FuncCat B ) ) |
| 26 |
25
|
fveq2d |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` ( C FuncCat A ) ) = ( Homf ` ( D FuncCat B ) ) ) |
| 27 |
26
|
oppchomfpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` ( oppCat ` ( C FuncCat A ) ) ) = ( Homf ` ( oppCat ` ( D FuncCat B ) ) ) ) |
| 28 |
25
|
fveq2d |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` ( C FuncCat A ) ) = ( comf ` ( D FuncCat B ) ) ) |
| 29 |
26 28
|
oppccomfpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` ( oppCat ` ( C FuncCat A ) ) ) = ( comf ` ( oppCat ` ( D FuncCat B ) ) ) ) |
| 30 |
|
fvexd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( oppCat ` A ) e. _V ) |
| 31 |
|
fvexd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( oppCat ` B ) e. _V ) |
| 32 |
|
fvexd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( oppCat ` ( C FuncCat A ) ) e. _V ) |
| 33 |
|
fvexd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( oppCat ` ( D FuncCat B ) ) e. _V ) |
| 34 |
11 13 27 29 30 31 32 33
|
uppropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( ( oppCat ` A ) UP ( oppCat ` ( C FuncCat A ) ) ) = ( ( oppCat ` B ) UP ( oppCat ` ( D FuncCat B ) ) ) ) |
| 35 |
10 12 14 15 23 24 18 22
|
diagpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( A DiagFunc C ) = ( B DiagFunc D ) ) |
| 36 |
35
|
fveq2d |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( oppFunc ` ( A DiagFunc C ) ) = ( oppFunc ` ( B DiagFunc D ) ) ) |
| 37 |
|
eqidd |
|- ( ( ph /\ f e. ( C Func A ) ) -> f = f ) |
| 38 |
34 36 37
|
oveq123d |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( ( oppFunc ` ( A DiagFunc C ) ) ( ( oppCat ` A ) UP ( oppCat ` ( C FuncCat A ) ) ) f ) = ( ( oppFunc ` ( B DiagFunc D ) ) ( ( oppCat ` B ) UP ( oppCat ` ( D FuncCat B ) ) ) f ) ) |
| 39 |
9 38
|
mpteq12dva |
|- ( ph -> ( f e. ( C Func A ) |-> ( ( oppFunc ` ( A DiagFunc C ) ) ( ( oppCat ` A ) UP ( oppCat ` ( C FuncCat A ) ) ) f ) ) = ( f e. ( D Func B ) |-> ( ( oppFunc ` ( B DiagFunc D ) ) ( ( oppCat ` B ) UP ( oppCat ` ( D FuncCat B ) ) ) f ) ) ) |
| 40 |
|
lmdfval |
|- ( A Limit C ) = ( f e. ( C Func A ) |-> ( ( oppFunc ` ( A DiagFunc C ) ) ( ( oppCat ` A ) UP ( oppCat ` ( C FuncCat A ) ) ) f ) ) |
| 41 |
|
lmdfval |
|- ( B Limit D ) = ( f e. ( D Func B ) |-> ( ( oppFunc ` ( B DiagFunc D ) ) ( ( oppCat ` B ) UP ( oppCat ` ( D FuncCat B ) ) ) f ) ) |
| 42 |
39 40 41
|
3eqtr4g |
|- ( ph -> ( A Limit C ) = ( B Limit D ) ) |