| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stfpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
1stfpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
1stfpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
1stfpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
1stfpropd.a |
|- ( ph -> A e. Cat ) |
| 6 |
|
1stfpropd.b |
|- ( ph -> B e. Cat ) |
| 7 |
|
1stfpropd.c |
|- ( ph -> C e. Cat ) |
| 8 |
|
1stfpropd.d |
|- ( ph -> D e. Cat ) |
| 9 |
|
eqid |
|- ( A Xc. C ) = ( A Xc. C ) |
| 10 |
|
eqid |
|- ( A 1stF C ) = ( A 1stF C ) |
| 11 |
9 5 7 10
|
1stfcl |
|- ( ph -> ( A 1stF C ) e. ( ( A Xc. C ) Func A ) ) |
| 12 |
1 2 3 4 5 6 7 8 11
|
curfpropd |
|- ( ph -> ( <. A , C >. curryF ( A 1stF C ) ) = ( <. B , D >. curryF ( A 1stF C ) ) ) |
| 13 |
|
eqid |
|- ( A DiagFunc C ) = ( A DiagFunc C ) |
| 14 |
13 5 7
|
diagval |
|- ( ph -> ( A DiagFunc C ) = ( <. A , C >. curryF ( A 1stF C ) ) ) |
| 15 |
|
eqid |
|- ( B DiagFunc D ) = ( B DiagFunc D ) |
| 16 |
15 6 8
|
diagval |
|- ( ph -> ( B DiagFunc D ) = ( <. B , D >. curryF ( B 1stF D ) ) ) |
| 17 |
1 2 3 4 5 6 7 8
|
1stfpropd |
|- ( ph -> ( A 1stF C ) = ( B 1stF D ) ) |
| 18 |
17
|
oveq2d |
|- ( ph -> ( <. B , D >. curryF ( A 1stF C ) ) = ( <. B , D >. curryF ( B 1stF D ) ) ) |
| 19 |
16 18
|
eqtr4d |
|- ( ph -> ( B DiagFunc D ) = ( <. B , D >. curryF ( A 1stF C ) ) ) |
| 20 |
12 14 19
|
3eqtr4d |
|- ( ph -> ( A DiagFunc C ) = ( B DiagFunc D ) ) |