Metamath Proof Explorer


Theorem diagpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have same diagonal functors. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses 1stfpropd.1
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) )
1stfpropd.2
|- ( ph -> ( comf ` A ) = ( comf ` B ) )
1stfpropd.3
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) )
1stfpropd.4
|- ( ph -> ( comf ` C ) = ( comf ` D ) )
1stfpropd.a
|- ( ph -> A e. Cat )
1stfpropd.b
|- ( ph -> B e. Cat )
1stfpropd.c
|- ( ph -> C e. Cat )
1stfpropd.d
|- ( ph -> D e. Cat )
Assertion diagpropd
|- ( ph -> ( A DiagFunc C ) = ( B DiagFunc D ) )

Proof

Step Hyp Ref Expression
1 1stfpropd.1
 |-  ( ph -> ( Homf ` A ) = ( Homf ` B ) )
2 1stfpropd.2
 |-  ( ph -> ( comf ` A ) = ( comf ` B ) )
3 1stfpropd.3
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
4 1stfpropd.4
 |-  ( ph -> ( comf ` C ) = ( comf ` D ) )
5 1stfpropd.a
 |-  ( ph -> A e. Cat )
6 1stfpropd.b
 |-  ( ph -> B e. Cat )
7 1stfpropd.c
 |-  ( ph -> C e. Cat )
8 1stfpropd.d
 |-  ( ph -> D e. Cat )
9 eqid
 |-  ( A Xc. C ) = ( A Xc. C )
10 eqid
 |-  ( A 1stF C ) = ( A 1stF C )
11 9 5 7 10 1stfcl
 |-  ( ph -> ( A 1stF C ) e. ( ( A Xc. C ) Func A ) )
12 1 2 3 4 5 6 7 8 11 curfpropd
 |-  ( ph -> ( <. A , C >. curryF ( A 1stF C ) ) = ( <. B , D >. curryF ( A 1stF C ) ) )
13 eqid
 |-  ( A DiagFunc C ) = ( A DiagFunc C )
14 13 5 7 diagval
 |-  ( ph -> ( A DiagFunc C ) = ( <. A , C >. curryF ( A 1stF C ) ) )
15 eqid
 |-  ( B DiagFunc D ) = ( B DiagFunc D )
16 15 6 8 diagval
 |-  ( ph -> ( B DiagFunc D ) = ( <. B , D >. curryF ( B 1stF D ) ) )
17 1 2 3 4 5 6 7 8 1stfpropd
 |-  ( ph -> ( A 1stF C ) = ( B 1stF D ) )
18 17 oveq2d
 |-  ( ph -> ( <. B , D >. curryF ( A 1stF C ) ) = ( <. B , D >. curryF ( B 1stF D ) ) )
19 16 18 eqtr4d
 |-  ( ph -> ( B DiagFunc D ) = ( <. B , D >. curryF ( A 1stF C ) ) )
20 12 14 19 3eqtr4d
 |-  ( ph -> ( A DiagFunc C ) = ( B DiagFunc D ) )