| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stfpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 2 |
|
1stfpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 3 |
|
1stfpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 |
|
1stfpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 |
|
1stfpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ Cat ) |
| 6 |
|
1stfpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ Cat ) |
| 7 |
|
1stfpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 |
|
1stfpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 9 |
|
eqid |
⊢ ( 𝐴 ×c 𝐶 ) = ( 𝐴 ×c 𝐶 ) |
| 10 |
|
eqid |
⊢ ( 𝐴 1stF 𝐶 ) = ( 𝐴 1stF 𝐶 ) |
| 11 |
9 5 7 10
|
1stfcl |
⊢ ( 𝜑 → ( 𝐴 1stF 𝐶 ) ∈ ( ( 𝐴 ×c 𝐶 ) Func 𝐴 ) ) |
| 12 |
1 2 3 4 5 6 7 8 11
|
curfpropd |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 curryF ( 𝐴 1stF 𝐶 ) ) = ( 〈 𝐵 , 𝐷 〉 curryF ( 𝐴 1stF 𝐶 ) ) ) |
| 13 |
|
eqid |
⊢ ( 𝐴 Δfunc 𝐶 ) = ( 𝐴 Δfunc 𝐶 ) |
| 14 |
13 5 7
|
diagval |
⊢ ( 𝜑 → ( 𝐴 Δfunc 𝐶 ) = ( 〈 𝐴 , 𝐶 〉 curryF ( 𝐴 1stF 𝐶 ) ) ) |
| 15 |
|
eqid |
⊢ ( 𝐵 Δfunc 𝐷 ) = ( 𝐵 Δfunc 𝐷 ) |
| 16 |
15 6 8
|
diagval |
⊢ ( 𝜑 → ( 𝐵 Δfunc 𝐷 ) = ( 〈 𝐵 , 𝐷 〉 curryF ( 𝐵 1stF 𝐷 ) ) ) |
| 17 |
1 2 3 4 5 6 7 8
|
1stfpropd |
⊢ ( 𝜑 → ( 𝐴 1stF 𝐶 ) = ( 𝐵 1stF 𝐷 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝜑 → ( 〈 𝐵 , 𝐷 〉 curryF ( 𝐴 1stF 𝐶 ) ) = ( 〈 𝐵 , 𝐷 〉 curryF ( 𝐵 1stF 𝐷 ) ) ) |
| 19 |
16 18
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐵 Δfunc 𝐷 ) = ( 〈 𝐵 , 𝐷 〉 curryF ( 𝐴 1stF 𝐶 ) ) ) |
| 20 |
12 14 19
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐴 Δfunc 𝐶 ) = ( 𝐵 Δfunc 𝐷 ) ) |