Metamath Proof Explorer


Theorem diagpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have same diagonal functors. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses 1stfpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
1stfpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
1stfpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
1stfpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
1stfpropd.a ( 𝜑𝐴 ∈ Cat )
1stfpropd.b ( 𝜑𝐵 ∈ Cat )
1stfpropd.c ( 𝜑𝐶 ∈ Cat )
1stfpropd.d ( 𝜑𝐷 ∈ Cat )
Assertion diagpropd ( 𝜑 → ( 𝐴 Δfunc 𝐶 ) = ( 𝐵 Δfunc 𝐷 ) )

Proof

Step Hyp Ref Expression
1 1stfpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
2 1stfpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
3 1stfpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
4 1stfpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
5 1stfpropd.a ( 𝜑𝐴 ∈ Cat )
6 1stfpropd.b ( 𝜑𝐵 ∈ Cat )
7 1stfpropd.c ( 𝜑𝐶 ∈ Cat )
8 1stfpropd.d ( 𝜑𝐷 ∈ Cat )
9 eqid ( 𝐴 ×c 𝐶 ) = ( 𝐴 ×c 𝐶 )
10 eqid ( 𝐴 1stF 𝐶 ) = ( 𝐴 1stF 𝐶 )
11 9 5 7 10 1stfcl ( 𝜑 → ( 𝐴 1stF 𝐶 ) ∈ ( ( 𝐴 ×c 𝐶 ) Func 𝐴 ) )
12 1 2 3 4 5 6 7 8 11 curfpropd ( 𝜑 → ( ⟨ 𝐴 , 𝐶 ⟩ curryF ( 𝐴 1stF 𝐶 ) ) = ( ⟨ 𝐵 , 𝐷 ⟩ curryF ( 𝐴 1stF 𝐶 ) ) )
13 eqid ( 𝐴 Δfunc 𝐶 ) = ( 𝐴 Δfunc 𝐶 )
14 13 5 7 diagval ( 𝜑 → ( 𝐴 Δfunc 𝐶 ) = ( ⟨ 𝐴 , 𝐶 ⟩ curryF ( 𝐴 1stF 𝐶 ) ) )
15 eqid ( 𝐵 Δfunc 𝐷 ) = ( 𝐵 Δfunc 𝐷 )
16 15 6 8 diagval ( 𝜑 → ( 𝐵 Δfunc 𝐷 ) = ( ⟨ 𝐵 , 𝐷 ⟩ curryF ( 𝐵 1stF 𝐷 ) ) )
17 1 2 3 4 5 6 7 8 1stfpropd ( 𝜑 → ( 𝐴 1stF 𝐶 ) = ( 𝐵 1stF 𝐷 ) )
18 17 oveq2d ( 𝜑 → ( ⟨ 𝐵 , 𝐷 ⟩ curryF ( 𝐴 1stF 𝐶 ) ) = ( ⟨ 𝐵 , 𝐷 ⟩ curryF ( 𝐵 1stF 𝐷 ) ) )
19 16 18 eqtr4d ( 𝜑 → ( 𝐵 Δfunc 𝐷 ) = ( ⟨ 𝐵 , 𝐷 ⟩ curryF ( 𝐴 1stF 𝐶 ) ) )
20 12 14 19 3eqtr4d ( 𝜑 → ( 𝐴 Δfunc 𝐶 ) = ( 𝐵 Δfunc 𝐷 ) )