| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stfpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
1stfpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
1stfpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
1stfpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
1stfpropd.a |
|- ( ph -> A e. Cat ) |
| 6 |
|
1stfpropd.b |
|- ( ph -> B e. Cat ) |
| 7 |
|
1stfpropd.c |
|- ( ph -> C e. Cat ) |
| 8 |
|
1stfpropd.d |
|- ( ph -> D e. Cat ) |
| 9 |
1 2 3 4 5 6 7 8
|
xpcpropd |
|- ( ph -> ( A Xc. C ) = ( B Xc. D ) ) |
| 10 |
9
|
fveq2d |
|- ( ph -> ( Base ` ( A Xc. C ) ) = ( Base ` ( B Xc. D ) ) ) |
| 11 |
10
|
reseq2d |
|- ( ph -> ( 1st |` ( Base ` ( A Xc. C ) ) ) = ( 1st |` ( Base ` ( B Xc. D ) ) ) ) |
| 12 |
9
|
fveq2d |
|- ( ph -> ( Hom ` ( A Xc. C ) ) = ( Hom ` ( B Xc. D ) ) ) |
| 13 |
12
|
oveqd |
|- ( ph -> ( x ( Hom ` ( A Xc. C ) ) y ) = ( x ( Hom ` ( B Xc. D ) ) y ) ) |
| 14 |
13
|
reseq2d |
|- ( ph -> ( 1st |` ( x ( Hom ` ( A Xc. C ) ) y ) ) = ( 1st |` ( x ( Hom ` ( B Xc. D ) ) y ) ) ) |
| 15 |
10 10 14
|
mpoeq123dv |
|- ( ph -> ( x e. ( Base ` ( A Xc. C ) ) , y e. ( Base ` ( A Xc. C ) ) |-> ( 1st |` ( x ( Hom ` ( A Xc. C ) ) y ) ) ) = ( x e. ( Base ` ( B Xc. D ) ) , y e. ( Base ` ( B Xc. D ) ) |-> ( 1st |` ( x ( Hom ` ( B Xc. D ) ) y ) ) ) ) |
| 16 |
11 15
|
opeq12d |
|- ( ph -> <. ( 1st |` ( Base ` ( A Xc. C ) ) ) , ( x e. ( Base ` ( A Xc. C ) ) , y e. ( Base ` ( A Xc. C ) ) |-> ( 1st |` ( x ( Hom ` ( A Xc. C ) ) y ) ) ) >. = <. ( 1st |` ( Base ` ( B Xc. D ) ) ) , ( x e. ( Base ` ( B Xc. D ) ) , y e. ( Base ` ( B Xc. D ) ) |-> ( 1st |` ( x ( Hom ` ( B Xc. D ) ) y ) ) ) >. ) |
| 17 |
|
eqid |
|- ( A Xc. C ) = ( A Xc. C ) |
| 18 |
|
eqid |
|- ( Base ` ( A Xc. C ) ) = ( Base ` ( A Xc. C ) ) |
| 19 |
|
eqid |
|- ( Hom ` ( A Xc. C ) ) = ( Hom ` ( A Xc. C ) ) |
| 20 |
|
eqid |
|- ( A 1stF C ) = ( A 1stF C ) |
| 21 |
17 18 19 5 7 20
|
1stfval |
|- ( ph -> ( A 1stF C ) = <. ( 1st |` ( Base ` ( A Xc. C ) ) ) , ( x e. ( Base ` ( A Xc. C ) ) , y e. ( Base ` ( A Xc. C ) ) |-> ( 1st |` ( x ( Hom ` ( A Xc. C ) ) y ) ) ) >. ) |
| 22 |
|
eqid |
|- ( B Xc. D ) = ( B Xc. D ) |
| 23 |
|
eqid |
|- ( Base ` ( B Xc. D ) ) = ( Base ` ( B Xc. D ) ) |
| 24 |
|
eqid |
|- ( Hom ` ( B Xc. D ) ) = ( Hom ` ( B Xc. D ) ) |
| 25 |
|
eqid |
|- ( B 1stF D ) = ( B 1stF D ) |
| 26 |
22 23 24 6 8 25
|
1stfval |
|- ( ph -> ( B 1stF D ) = <. ( 1st |` ( Base ` ( B Xc. D ) ) ) , ( x e. ( Base ` ( B Xc. D ) ) , y e. ( Base ` ( B Xc. D ) ) |-> ( 1st |` ( x ( Hom ` ( B Xc. D ) ) y ) ) ) >. ) |
| 27 |
16 21 26
|
3eqtr4d |
|- ( ph -> ( A 1stF C ) = ( B 1stF D ) ) |