| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
lmdpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
lmdpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
lmdpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
lmdpropd.a |
|- ( ph -> A e. V ) |
| 6 |
|
lmdpropd.b |
|- ( ph -> B e. V ) |
| 7 |
|
lmdpropd.c |
|- ( ph -> C e. V ) |
| 8 |
|
lmdpropd.d |
|- ( ph -> D e. V ) |
| 9 |
3 4 1 2 7 8 5 6
|
funcpropd |
|- ( ph -> ( C Func A ) = ( D Func B ) ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` A ) = ( comf ` B ) ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ f e. ( C Func A ) ) -> f e. ( C Func A ) ) |
| 15 |
14
|
func1st2nd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( 1st ` f ) ( C Func A ) ( 2nd ` f ) ) |
| 16 |
15
|
funcrcl2 |
|- ( ( ph /\ f e. ( C Func A ) ) -> C e. Cat ) |
| 17 |
9
|
adantr |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( C Func A ) = ( D Func B ) ) |
| 18 |
14 17
|
eleqtrd |
|- ( ( ph /\ f e. ( C Func A ) ) -> f e. ( D Func B ) ) |
| 19 |
18
|
func1st2nd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( 1st ` f ) ( D Func B ) ( 2nd ` f ) ) |
| 20 |
19
|
funcrcl2 |
|- ( ( ph /\ f e. ( C Func A ) ) -> D e. Cat ) |
| 21 |
15
|
funcrcl3 |
|- ( ( ph /\ f e. ( C Func A ) ) -> A e. Cat ) |
| 22 |
19
|
funcrcl3 |
|- ( ( ph /\ f e. ( C Func A ) ) -> B e. Cat ) |
| 23 |
12 13 10 11 16 20 21 22
|
fucpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( C FuncCat A ) = ( D FuncCat B ) ) |
| 24 |
23
|
fveq2d |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( Homf ` ( C FuncCat A ) ) = ( Homf ` ( D FuncCat B ) ) ) |
| 25 |
23
|
fveq2d |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( comf ` ( C FuncCat A ) ) = ( comf ` ( D FuncCat B ) ) ) |
| 26 |
|
eqid |
|- ( C FuncCat A ) = ( C FuncCat A ) |
| 27 |
26 16 21
|
fuccat |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( C FuncCat A ) e. Cat ) |
| 28 |
23 27
|
eqeltrrd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( D FuncCat B ) e. Cat ) |
| 29 |
10 11 24 25 21 22 27 28
|
uppropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( A UP ( C FuncCat A ) ) = ( B UP ( D FuncCat B ) ) ) |
| 30 |
10 11 12 13 21 22 16 20
|
diagpropd |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( A DiagFunc C ) = ( B DiagFunc D ) ) |
| 31 |
|
eqidd |
|- ( ( ph /\ f e. ( C Func A ) ) -> f = f ) |
| 32 |
29 30 31
|
oveq123d |
|- ( ( ph /\ f e. ( C Func A ) ) -> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) = ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) |
| 33 |
9 32
|
mpteq12dva |
|- ( ph -> ( f e. ( C Func A ) |-> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) ) = ( f e. ( D Func B ) |-> ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) ) |
| 34 |
|
cmdfval |
|- ( A Colimit C ) = ( f e. ( C Func A ) |-> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) ) |
| 35 |
|
cmdfval |
|- ( B Colimit D ) = ( f e. ( D Func B ) |-> ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) |
| 36 |
33 34 35
|
3eqtr4g |
|- ( ph -> ( A Colimit C ) = ( B Colimit D ) ) |