Metamath Proof Explorer


Theorem cmdpropd

Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same colimits. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses lmdpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
lmdpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
lmdpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
lmdpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
lmdpropd.a ( 𝜑𝐴𝑉 )
lmdpropd.b ( 𝜑𝐵𝑉 )
lmdpropd.c ( 𝜑𝐶𝑉 )
lmdpropd.d ( 𝜑𝐷𝑉 )
Assertion cmdpropd ( 𝜑 → ( 𝐴 Colimit 𝐶 ) = ( 𝐵 Colimit 𝐷 ) )

Proof

Step Hyp Ref Expression
1 lmdpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
2 lmdpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
3 lmdpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
4 lmdpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
5 lmdpropd.a ( 𝜑𝐴𝑉 )
6 lmdpropd.b ( 𝜑𝐵𝑉 )
7 lmdpropd.c ( 𝜑𝐶𝑉 )
8 lmdpropd.d ( 𝜑𝐷𝑉 )
9 3 4 1 2 7 8 5 6 funcpropd ( 𝜑 → ( 𝐶 Func 𝐴 ) = ( 𝐷 Func 𝐵 ) )
10 1 adantr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
11 2 adantr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf𝐴 ) = ( compf𝐵 ) )
12 3 adantr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
13 4 adantr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
14 simpr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝑓 ∈ ( 𝐶 Func 𝐴 ) )
15 14 func1st2nd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 1st𝑓 ) ( 𝐶 Func 𝐴 ) ( 2nd𝑓 ) )
16 15 funcrcl2 ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐶 ∈ Cat )
17 9 adantr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐶 Func 𝐴 ) = ( 𝐷 Func 𝐵 ) )
18 14 17 eleqtrd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝑓 ∈ ( 𝐷 Func 𝐵 ) )
19 18 func1st2nd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 1st𝑓 ) ( 𝐷 Func 𝐵 ) ( 2nd𝑓 ) )
20 19 funcrcl2 ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐷 ∈ Cat )
21 15 funcrcl3 ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐴 ∈ Cat )
22 19 funcrcl3 ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝐵 ∈ Cat )
23 12 13 10 11 16 20 21 22 fucpropd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐶 FuncCat 𝐴 ) = ( 𝐷 FuncCat 𝐵 ) )
24 23 fveq2d ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( Homf ‘ ( 𝐶 FuncCat 𝐴 ) ) = ( Homf ‘ ( 𝐷 FuncCat 𝐵 ) ) )
25 23 fveq2d ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( compf ‘ ( 𝐶 FuncCat 𝐴 ) ) = ( compf ‘ ( 𝐷 FuncCat 𝐵 ) ) )
26 eqid ( 𝐶 FuncCat 𝐴 ) = ( 𝐶 FuncCat 𝐴 )
27 26 16 21 fuccat ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐶 FuncCat 𝐴 ) ∈ Cat )
28 23 27 eqeltrrd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐷 FuncCat 𝐵 ) ∈ Cat )
29 10 11 24 25 21 22 27 28 uppropd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐴 UP ( 𝐶 FuncCat 𝐴 ) ) = ( 𝐵 UP ( 𝐷 FuncCat 𝐵 ) ) )
30 10 11 12 13 21 22 16 20 diagpropd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( 𝐴 Δfunc 𝐶 ) = ( 𝐵 Δfunc 𝐷 ) )
31 eqidd ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → 𝑓 = 𝑓 )
32 29 30 31 oveq123d ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐴 ) ) → ( ( 𝐴 Δfunc 𝐶 ) ( 𝐴 UP ( 𝐶 FuncCat 𝐴 ) ) 𝑓 ) = ( ( 𝐵 Δfunc 𝐷 ) ( 𝐵 UP ( 𝐷 FuncCat 𝐵 ) ) 𝑓 ) )
33 9 32 mpteq12dva ( 𝜑 → ( 𝑓 ∈ ( 𝐶 Func 𝐴 ) ↦ ( ( 𝐴 Δfunc 𝐶 ) ( 𝐴 UP ( 𝐶 FuncCat 𝐴 ) ) 𝑓 ) ) = ( 𝑓 ∈ ( 𝐷 Func 𝐵 ) ↦ ( ( 𝐵 Δfunc 𝐷 ) ( 𝐵 UP ( 𝐷 FuncCat 𝐵 ) ) 𝑓 ) ) )
34 cmdfval ( 𝐴 Colimit 𝐶 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐴 ) ↦ ( ( 𝐴 Δfunc 𝐶 ) ( 𝐴 UP ( 𝐶 FuncCat 𝐴 ) ) 𝑓 ) )
35 cmdfval ( 𝐵 Colimit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐵 ) ↦ ( ( 𝐵 Δfunc 𝐷 ) ( 𝐵 UP ( 𝐷 FuncCat 𝐵 ) ) 𝑓 ) )
36 33 34 35 3eqtr4g ( 𝜑 → ( 𝐴 Colimit 𝐶 ) = ( 𝐵 Colimit 𝐷 ) )