Metamath Proof Explorer


Theorem rellmd

Description: The set of limits of a diagram is a relation. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Assertion rellmd Rel ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 )

Proof

Step Hyp Ref Expression
1 relup Rel ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 )
2 lmdfval2 ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 )
3 2 releqi ( Rel ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) ↔ Rel ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) )
4 1 3 mpbir Rel ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 )