Description: The set of limits of a diagram is a relation. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rellmd | ⊢ Rel ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relup | ⊢ Rel ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) | |
| 2 | lmdfval2 | ⊢ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) | |
| 3 | 2 | releqi | ⊢ ( Rel ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) ↔ Rel ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) |
| 4 | 1 3 | mpbir | ⊢ Rel ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) |