Description: The set of colimits of a diagram is a relation. (Contributed by Zhi Wang, 13-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcmd | ⊢ Rel ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relup | ⊢ Rel ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) | |
| 2 | cmdfval2 | ⊢ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) | |
| 3 | 2 | releqi | ⊢ ( Rel ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) ↔ Rel ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) |
| 4 | 1 3 | mpbir | ⊢ Rel ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) |