Metamath Proof Explorer


Theorem relcmd

Description: The set of colimits of a diagram is a relation. (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Assertion relcmd Rel ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 )

Proof

Step Hyp Ref Expression
1 relup Rel ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 )
2 cmdfval2 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 )
3 2 releqi ( Rel ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) ↔ Rel ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) )
4 1 3 mpbir Rel ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 )