| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdfval |
⊢ ( 𝐶 Limit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) |
| 2 |
1
|
mptrcl |
⊢ ( 𝑓 ∈ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 3 |
|
eqid |
⊢ ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 4 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 5 |
4
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 6 |
3 5
|
oppcbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) |
| 7 |
6
|
uprcl |
⊢ ( 𝑓 ∈ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) → ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ∈ ( ( oppCat ‘ 𝐶 ) Func ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) ) |
| 8 |
7
|
simprd |
⊢ ( 𝑓 ∈ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) |
| 10 |
|
ovex |
⊢ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ∈ V |
| 11 |
9 1 10
|
fvmpt |
⊢ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) → ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) → ( 𝑓 ∈ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) ↔ 𝑓 ∈ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) ) |
| 13 |
2 8 12
|
pm5.21nii |
⊢ ( 𝑓 ∈ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) ↔ 𝑓 ∈ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) |
| 14 |
13
|
eqriv |
⊢ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) |