Metamath Proof Explorer


Theorem lmdfval2

Description: The set of limits of a diagram. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Assertion lmdfval2 Could not format assertion : No typesetting found for |- ( ( C Limit D ) ` F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) with typecode |-

Proof

Step Hyp Ref Expression
1 lmdfval Could not format ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) : No typesetting found for |- ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) with typecode |-
2 1 mptrcl Could not format ( f e. ( ( C Limit D ) ` F ) -> F e. ( D Func C ) ) : No typesetting found for |- ( f e. ( ( C Limit D ) ` F ) -> F e. ( D Func C ) ) with typecode |-
3 eqid oppCat D FuncCat C = oppCat D FuncCat C
4 eqid D FuncCat C = D FuncCat C
5 4 fucbas D Func C = Base D FuncCat C
6 3 5 oppcbas D Func C = Base oppCat D FuncCat C
7 6 uprcl Could not format ( f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) -> ( ( oppFunc ` ( C DiagFunc D ) ) e. ( ( oppCat ` C ) Func ( oppCat ` ( D FuncCat C ) ) ) /\ F e. ( D Func C ) ) ) : No typesetting found for |- ( f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) -> ( ( oppFunc ` ( C DiagFunc D ) ) e. ( ( oppCat ` C ) Func ( oppCat ` ( D FuncCat C ) ) ) /\ F e. ( D Func C ) ) ) with typecode |-
8 7 simprd Could not format ( f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) -> F e. ( D Func C ) ) : No typesetting found for |- ( f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) -> F e. ( D Func C ) ) with typecode |-
9 oveq2 Could not format ( f = F -> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) : No typesetting found for |- ( f = F -> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) with typecode |-
10 ovex Could not format ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) e. _V : No typesetting found for |- ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) e. _V with typecode |-
11 9 1 10 fvmpt Could not format ( F e. ( D Func C ) -> ( ( C Limit D ) ` F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) : No typesetting found for |- ( F e. ( D Func C ) -> ( ( C Limit D ) ` F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) with typecode |-
12 11 eleq2d Could not format ( F e. ( D Func C ) -> ( f e. ( ( C Limit D ) ` F ) <-> f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) ) : No typesetting found for |- ( F e. ( D Func C ) -> ( f e. ( ( C Limit D ) ` F ) <-> f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) ) with typecode |-
13 2 8 12 pm5.21nii Could not format ( f e. ( ( C Limit D ) ` F ) <-> f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) : No typesetting found for |- ( f e. ( ( C Limit D ) ` F ) <-> f e. ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) with typecode |-
14 13 eqriv Could not format ( ( C Limit D ) ` F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) : No typesetting found for |- ( ( C Limit D ) ` F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) with typecode |-