Metamath Proof Explorer


Theorem lmdfval

Description: Function value of Limit . (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Assertion lmdfval Could not format assertion : No typesetting found for |- ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 simpr c = C d = D d = D
2 simpl c = C d = D c = C
3 1 2 oveq12d c = C d = D d Func c = D Func C
4 2 fveq2d c = C d = D oppCat c = oppCat C
5 1 2 oveq12d c = C d = D d FuncCat c = D FuncCat C
6 5 fveq2d c = C d = D oppCat d FuncCat c = oppCat D FuncCat C
7 4 6 oveq12d Could not format ( ( c = C /\ d = D ) -> ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) = ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) ) : No typesetting found for |- ( ( c = C /\ d = D ) -> ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) = ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) ) with typecode |-
8 oveq12 c = C d = D c Δ func d = C Δ func D
9 8 fveq2d Could not format ( ( c = C /\ d = D ) -> ( oppFunc ` ( c DiagFunc d ) ) = ( oppFunc ` ( C DiagFunc D ) ) ) : No typesetting found for |- ( ( c = C /\ d = D ) -> ( oppFunc ` ( c DiagFunc d ) ) = ( oppFunc ` ( C DiagFunc D ) ) ) with typecode |-
10 eqidd c = C d = D f = f
11 7 9 10 oveq123d Could not format ( ( c = C /\ d = D ) -> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) : No typesetting found for |- ( ( c = C /\ d = D ) -> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) with typecode |-
12 3 11 mpteq12dv Could not format ( ( c = C /\ d = D ) -> ( f e. ( d Func c ) |-> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) : No typesetting found for |- ( ( c = C /\ d = D ) -> ( f e. ( d Func c ) |-> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) with typecode |-
13 df-lmd Could not format Limit = ( c e. _V , d e. _V |-> ( f e. ( d Func c ) |-> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) ) ) : No typesetting found for |- Limit = ( c e. _V , d e. _V |-> ( f e. ( d Func c ) |-> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) ) ) with typecode |-
14 ovex D Func C V
15 14 mptex Could not format ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) e. _V : No typesetting found for |- ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) e. _V with typecode |-
16 12 13 15 ovmpoa Could not format ( ( C e. _V /\ D e. _V ) -> ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) : No typesetting found for |- ( ( C e. _V /\ D e. _V ) -> ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) with typecode |-
17 reldmlmd Could not format Rel dom Limit : No typesetting found for |- Rel dom Limit with typecode |-
18 17 ovprc Could not format ( -. ( C e. _V /\ D e. _V ) -> ( C Limit D ) = (/) ) : No typesetting found for |- ( -. ( C e. _V /\ D e. _V ) -> ( C Limit D ) = (/) ) with typecode |-
19 ancom C V D V D V C V
20 reldmfunc Rel dom Func
21 20 ovprc ¬ D V C V D Func C =
22 19 21 sylnbi ¬ C V D V D Func C =
23 22 mpteq1d Could not format ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = ( f e. (/) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) : No typesetting found for |- ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = ( f e. (/) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) with typecode |-
24 mpt0 Could not format ( f e. (/) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = (/) : No typesetting found for |- ( f e. (/) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = (/) with typecode |-
25 23 24 eqtrdi Could not format ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = (/) ) : No typesetting found for |- ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = (/) ) with typecode |-
26 18 25 eqtr4d Could not format ( -. ( C e. _V /\ D e. _V ) -> ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) : No typesetting found for |- ( -. ( C e. _V /\ D e. _V ) -> ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) with typecode |-
27 16 26 pm2.61i Could not format ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) : No typesetting found for |- ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) with typecode |-