Description: The set of limits of a diagram is a relation. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rellmd | |- Rel ( ( C Limit D ) ` F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relup | |- Rel ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) |
|
| 2 | lmdfval2 | |- ( ( C Limit D ) ` F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) |
|
| 3 | 2 | releqi | |- ( Rel ( ( C Limit D ) ` F ) <-> Rel ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) |
| 4 | 1 3 | mpbir | |- Rel ( ( C Limit D ) ` F ) |