| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmdfval |
|- ( C Colimit D ) = ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) |
| 2 |
1
|
mptrcl |
|- ( f e. ( ( C Colimit D ) ` F ) -> F e. ( D Func C ) ) |
| 3 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
| 4 |
3
|
fucbas |
|- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
| 5 |
4
|
uprcl |
|- ( f e. ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) -> ( ( C DiagFunc D ) e. ( C Func ( D FuncCat C ) ) /\ F e. ( D Func C ) ) ) |
| 6 |
5
|
simprd |
|- ( f e. ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) -> F e. ( D Func C ) ) |
| 7 |
|
oveq2 |
|- ( f = F -> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) = ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) ) |
| 8 |
|
ovex |
|- ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) e. _V |
| 9 |
7 1 8
|
fvmpt |
|- ( F e. ( D Func C ) -> ( ( C Colimit D ) ` F ) = ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) ) |
| 10 |
9
|
eleq2d |
|- ( F e. ( D Func C ) -> ( f e. ( ( C Colimit D ) ` F ) <-> f e. ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) ) ) |
| 11 |
2 6 10
|
pm5.21nii |
|- ( f e. ( ( C Colimit D ) ` F ) <-> f e. ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) ) |
| 12 |
11
|
eqriv |
|- ( ( C Colimit D ) ` F ) = ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) F ) |