| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmd.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
islmd.a |
|- A = ( Base ` C ) |
| 3 |
|
islmd.n |
|- N = ( D Nat C ) |
| 4 |
|
islmd.b |
|- B = ( Base ` D ) |
| 5 |
|
concl.k |
|- K = ( ( 1st ` L ) ` X ) |
| 6 |
|
concl.x |
|- ( ph -> X e. A ) |
| 7 |
|
concl.y |
|- ( ph -> Y e. B ) |
| 8 |
|
concom.z |
|- ( ph -> Z e. B ) |
| 9 |
|
concom.m |
|- ( ph -> M e. ( Y J Z ) ) |
| 10 |
|
concom.j |
|- J = ( Hom ` D ) |
| 11 |
|
concom.o |
|- .x. = ( comp ` C ) |
| 12 |
|
coccom.r |
|- ( ph -> R e. ( F N K ) ) |
| 13 |
3 12
|
nat1st2nd |
|- ( ph -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 14 |
3 13 4 10 11 7 8 9
|
nati |
|- ( ph -> ( ( R ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. .x. ( ( 1st ` K ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` M ) ) = ( ( ( Y ( 2nd ` K ) Z ) ` M ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` K ) ` Y ) >. .x. ( ( 1st ` K ) ` Z ) ) ( R ` Y ) ) ) |
| 15 |
3 13
|
natrcl2 |
|- ( ph -> ( 1st ` F ) ( D Func C ) ( 2nd ` F ) ) |
| 16 |
15
|
funcrcl3 |
|- ( ph -> C e. Cat ) |
| 17 |
15
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 18 |
1 16 17 2 6 5 4 8
|
diag11 |
|- ( ph -> ( ( 1st ` K ) ` Z ) = X ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. .x. ( ( 1st ` K ) ` Z ) ) = ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. .x. X ) ) |
| 20 |
19
|
oveqd |
|- ( ph -> ( ( R ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. .x. ( ( 1st ` K ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` M ) ) = ( ( R ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. .x. X ) ( ( Y ( 2nd ` F ) Z ) ` M ) ) ) |
| 21 |
1 16 17 2 6 5 4 7
|
diag11 |
|- ( ph -> ( ( 1st ` K ) ` Y ) = X ) |
| 22 |
21
|
opeq2d |
|- ( ph -> <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` K ) ` Y ) >. = <. ( ( 1st ` F ) ` Y ) , X >. ) |
| 23 |
22 18
|
oveq12d |
|- ( ph -> ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` K ) ` Y ) >. .x. ( ( 1st ` K ) ` Z ) ) = ( <. ( ( 1st ` F ) ` Y ) , X >. .x. X ) ) |
| 24 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 25 |
1 16 17 2 6 5 4 7 10 24 8 9
|
diag12 |
|- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` M ) = ( ( Id ` C ) ` X ) ) |
| 26 |
|
eqidd |
|- ( ph -> ( R ` Y ) = ( R ` Y ) ) |
| 27 |
23 25 26
|
oveq123d |
|- ( ph -> ( ( ( Y ( 2nd ` K ) Z ) ` M ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` K ) ` Y ) >. .x. ( ( 1st ` K ) ` Z ) ) ( R ` Y ) ) = ( ( ( Id ` C ) ` X ) ( <. ( ( 1st ` F ) ` Y ) , X >. .x. X ) ( R ` Y ) ) ) |
| 28 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 29 |
4 2 15
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> A ) |
| 30 |
29 7
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` F ) ` Y ) e. A ) |
| 31 |
1 2 3 4 5 6 7 28 12
|
coccl |
|- ( ph -> ( R ` Y ) e. ( ( ( 1st ` F ) ` Y ) ( Hom ` C ) X ) ) |
| 32 |
2 28 24 16 30 11 6 31
|
catlid |
|- ( ph -> ( ( ( Id ` C ) ` X ) ( <. ( ( 1st ` F ) ` Y ) , X >. .x. X ) ( R ` Y ) ) = ( R ` Y ) ) |
| 33 |
27 32
|
eqtrd |
|- ( ph -> ( ( ( Y ( 2nd ` K ) Z ) ` M ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` K ) ` Y ) >. .x. ( ( 1st ` K ) ` Z ) ) ( R ` Y ) ) = ( R ` Y ) ) |
| 34 |
14 20 33
|
3eqtr3rd |
|- ( ph -> ( R ` Y ) = ( ( R ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. .x. X ) ( ( Y ( 2nd ` F ) Z ) ` M ) ) ) |