| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmd.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
islmd.a |
|- A = ( Base ` C ) |
| 3 |
|
islmd.n |
|- N = ( D Nat C ) |
| 4 |
|
islmd.b |
|- B = ( Base ` D ) |
| 5 |
|
islmd.h |
|- H = ( Hom ` C ) |
| 6 |
|
islmd.x |
|- .x. = ( comp ` C ) |
| 7 |
|
lmdfval2 |
|- ( ( C Limit D ) ` F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) |
| 8 |
1
|
fveq2i |
|- ( oppFunc ` L ) = ( oppFunc ` ( C DiagFunc D ) ) |
| 9 |
8
|
oveq1i |
|- ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) |
| 10 |
7 9
|
eqtr4i |
|- ( ( C Limit D ) ` F ) = ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) |
| 11 |
10
|
breqi |
|- ( X ( ( C Limit D ) ` F ) R <-> X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R ) |
| 12 |
|
id |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R ) |
| 13 |
12
|
up1st2nd |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> X ( <. ( 1st ` ( oppFunc ` L ) ) , ( 2nd ` ( oppFunc ` L ) ) >. ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R ) |
| 14 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 15 |
13 14 2
|
oppcuprcl4 |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> X e. A ) |
| 16 |
|
eqid |
|- ( oppCat ` ( D FuncCat C ) ) = ( oppCat ` ( D FuncCat C ) ) |
| 17 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
| 18 |
17
|
fucbas |
|- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
| 19 |
13 16 18
|
oppcuprcl3 |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> F e. ( D Func C ) ) |
| 20 |
|
simpr |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> F e. ( D Func C ) ) |
| 21 |
20
|
func1st2nd |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> ( 1st ` F ) ( D Func C ) ( 2nd ` F ) ) |
| 22 |
21
|
funcrcl3 |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> C e. Cat ) |
| 23 |
21
|
funcrcl2 |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> D e. Cat ) |
| 24 |
1 22 23 17
|
diagcl |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> L e. ( C Func ( D FuncCat C ) ) ) |
| 25 |
|
oppfval2 |
|- ( L e. ( C Func ( D FuncCat C ) ) -> ( oppFunc ` L ) = <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ) |
| 26 |
24 25
|
syl |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> ( oppFunc ` L ) = <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ) |
| 27 |
26
|
oveq1d |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) = ( <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) ) |
| 28 |
27
|
breqd |
|- ( ( X e. A /\ F e. ( D Func C ) ) -> ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R <-> X ( <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R ) ) |
| 29 |
15 19 28
|
syl2anc |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R <-> X ( <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R ) ) |
| 30 |
29
|
ibi |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> X ( <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R ) |
| 31 |
17 3
|
fuchom |
|- N = ( Hom ` ( D FuncCat C ) ) |
| 32 |
30 16 31
|
oppcuprcl5 |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> R e. ( ( ( 1st ` L ) ` X ) N F ) ) |
| 33 |
15 32
|
jca |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R -> ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) ) |
| 34 |
3
|
natrcl |
|- ( R e. ( ( ( 1st ` L ) ` X ) N F ) -> ( ( ( 1st ` L ) ` X ) e. ( D Func C ) /\ F e. ( D Func C ) ) ) |
| 35 |
34
|
simprd |
|- ( R e. ( ( ( 1st ` L ) ` X ) N F ) -> F e. ( D Func C ) ) |
| 36 |
35 28
|
sylan2 |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R <-> X ( <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R ) ) |
| 37 |
|
eqid |
|- ( comp ` ( D FuncCat C ) ) = ( comp ` ( D FuncCat C ) ) |
| 38 |
35
|
adantl |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> F e. ( D Func C ) ) |
| 39 |
35 24
|
sylan2 |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> L e. ( C Func ( D FuncCat C ) ) ) |
| 40 |
39
|
func1st2nd |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 41 |
|
simpl |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> X e. A ) |
| 42 |
|
simpr |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> R e. ( ( ( 1st ` L ) ` X ) N F ) ) |
| 43 |
2 18 5 31 37 38 40 41 42 14 16
|
oppcup |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> ( X ( <. ( 1st ` L ) , tpos ( 2nd ` L ) >. ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R <-> A. x e. A A. a e. ( ( ( 1st ` L ) ` x ) N F ) E! m e. ( x H X ) a = ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( ( x ( 2nd ` L ) X ) ` m ) ) ) ) |
| 44 |
35 22
|
sylan2 |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> C e. Cat ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> C e. Cat ) |
| 46 |
35 23
|
sylan2 |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> D e. Cat ) |
| 47 |
46
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> D e. Cat ) |
| 48 |
|
simplrl |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> x e. A ) |
| 49 |
41
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> X e. A ) |
| 50 |
|
simpr |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> m e. ( x H X ) ) |
| 51 |
1 2 4 5 45 47 48 49 50
|
diag2 |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> ( ( x ( 2nd ` L ) X ) ` m ) = ( B X. { m } ) ) |
| 52 |
51
|
oveq2d |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( ( x ( 2nd ` L ) X ) ` m ) ) = ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( B X. { m } ) ) ) |
| 53 |
1 2 4 5 45 47 48 49 50 3
|
diag2cl |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> ( B X. { m } ) e. ( ( ( 1st ` L ) ` x ) N ( ( 1st ` L ) ` X ) ) ) |
| 54 |
42
|
ad2antrr |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> R e. ( ( ( 1st ` L ) ` X ) N F ) ) |
| 55 |
17 3 4 6 37 53 54
|
fucco |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( B X. { m } ) ) = ( j e. B |-> ( ( R ` j ) ( <. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` F ) ` j ) ) ( ( B X. { m } ) ` j ) ) ) ) |
| 56 |
45
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> C e. Cat ) |
| 57 |
47
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> D e. Cat ) |
| 58 |
48
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> x e. A ) |
| 59 |
|
eqid |
|- ( ( 1st ` L ) ` x ) = ( ( 1st ` L ) ` x ) |
| 60 |
|
simpr |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> j e. B ) |
| 61 |
1 56 57 2 58 59 4 60
|
diag11 |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) = x ) |
| 62 |
49
|
adantr |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> X e. A ) |
| 63 |
|
eqid |
|- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
| 64 |
1 56 57 2 62 63 4 60
|
diag11 |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) = X ) |
| 65 |
61 64
|
opeq12d |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> <. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. = <. x , X >. ) |
| 66 |
65
|
oveq1d |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> ( <. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` F ) ` j ) ) = ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) ) |
| 67 |
|
eqidd |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> ( R ` j ) = ( R ` j ) ) |
| 68 |
|
vex |
|- m e. _V |
| 69 |
68
|
fvconst2 |
|- ( j e. B -> ( ( B X. { m } ) ` j ) = m ) |
| 70 |
69
|
adantl |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> ( ( B X. { m } ) ` j ) = m ) |
| 71 |
66 67 70
|
oveq123d |
|- ( ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) /\ j e. B ) -> ( ( R ` j ) ( <. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` F ) ` j ) ) ( ( B X. { m } ) ` j ) ) = ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) |
| 72 |
71
|
mpteq2dva |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> ( j e. B |-> ( ( R ` j ) ( <. ( ( 1st ` ( ( 1st ` L ) ` x ) ) ` j ) , ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` j ) >. .x. ( ( 1st ` F ) ` j ) ) ( ( B X. { m } ) ` j ) ) ) = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) |
| 73 |
52 55 72
|
3eqtrd |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( ( x ( 2nd ` L ) X ) ` m ) ) = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) |
| 74 |
73
|
eqeq2d |
|- ( ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) /\ m e. ( x H X ) ) -> ( a = ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( ( x ( 2nd ` L ) X ) ` m ) ) <-> a = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) ) |
| 75 |
74
|
reubidva |
|- ( ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ ( x e. A /\ a e. ( ( ( 1st ` L ) ` x ) N F ) ) ) -> ( E! m e. ( x H X ) a = ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( ( x ( 2nd ` L ) X ) ` m ) ) <-> E! m e. ( x H X ) a = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) ) |
| 76 |
75
|
2ralbidva |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> ( A. x e. A A. a e. ( ( ( 1st ` L ) ` x ) N F ) E! m e. ( x H X ) a = ( R ( <. ( ( 1st ` L ) ` x ) , ( ( 1st ` L ) ` X ) >. ( comp ` ( D FuncCat C ) ) F ) ( ( x ( 2nd ` L ) X ) ` m ) ) <-> A. x e. A A. a e. ( ( ( 1st ` L ) ` x ) N F ) E! m e. ( x H X ) a = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) ) |
| 77 |
36 43 76
|
3bitrd |
|- ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) -> ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R <-> A. x e. A A. a e. ( ( ( 1st ` L ) ` x ) N F ) E! m e. ( x H X ) a = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) ) |
| 78 |
33 77
|
biadanii |
|- ( X ( ( oppFunc ` L ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) F ) R <-> ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ A. x e. A A. a e. ( ( ( 1st ` L ) ` x ) N F ) E! m e. ( x H X ) a = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) ) |
| 79 |
11 78
|
bitri |
|- ( X ( ( C Limit D ) ` F ) R <-> ( ( X e. A /\ R e. ( ( ( 1st ` L ) ` X ) N F ) ) /\ A. x e. A A. a e. ( ( ( 1st ` L ) ` x ) N F ) E! m e. ( x H X ) a = ( j e. B |-> ( ( R ` j ) ( <. x , X >. .x. ( ( 1st ` F ) ` j ) ) m ) ) ) ) |