| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmd.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
islmd.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
islmd.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) |
| 4 |
|
islmd.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 5 |
|
islmd.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
islmd.x |
⊢ · = ( comp ‘ 𝐶 ) |
| 7 |
|
lmdfval2 |
⊢ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) |
| 8 |
1
|
fveq2i |
⊢ ( oppFunc ‘ 𝐿 ) = ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) |
| 9 |
8
|
oveq1i |
⊢ ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) |
| 10 |
7 9
|
eqtr4i |
⊢ ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) = ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) |
| 11 |
10
|
breqi |
⊢ ( 𝑋 ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) 𝑅 ↔ 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ) |
| 12 |
|
id |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ) |
| 13 |
12
|
up1st2nd |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → 𝑋 ( 〈 ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) , ( 2nd ‘ ( oppFunc ‘ 𝐿 ) ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ) |
| 14 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
| 15 |
13 14 2
|
oppcuprcl4 |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → 𝑋 ∈ 𝐴 ) |
| 16 |
|
eqid |
⊢ ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 17 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 18 |
17
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 19 |
13 16 18
|
oppcuprcl3 |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 21 |
20
|
func1st2nd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐹 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐹 ) ) |
| 22 |
21
|
funcrcl3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 23 |
21
|
funcrcl2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐷 ∈ Cat ) |
| 24 |
1 22 23 17
|
diagcl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 25 |
|
oppfval2 |
⊢ ( 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) → ( oppFunc ‘ 𝐿 ) = 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( oppFunc ‘ 𝐿 ) = 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ) |
| 27 |
26
|
oveq1d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) = ( 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) ) |
| 28 |
27
|
breqd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ↔ 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ) ) |
| 29 |
15 19 28
|
syl2anc |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ↔ 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ) ) |
| 30 |
29
|
ibi |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ) |
| 31 |
17 3
|
fuchom |
⊢ 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 32 |
30 16 31
|
oppcuprcl5 |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) |
| 33 |
15 32
|
jca |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 → ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ) |
| 34 |
3
|
natrcl |
⊢ ( 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) → ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) ) |
| 35 |
34
|
simprd |
⊢ ( 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 36 |
35 28
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ↔ 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ) ) |
| 37 |
|
eqid |
⊢ ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 38 |
35
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 39 |
35 24
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 40 |
39
|
func1st2nd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 41 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → 𝑋 ∈ 𝐴 ) |
| 42 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) |
| 43 |
2 18 5 31 37 38 40 41 42 14 16
|
oppcup |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → ( 𝑋 ( 〈 ( 1st ‘ 𝐿 ) , tpos ( 2nd ‘ 𝐿 ) 〉 ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 44 |
35 22
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → 𝐶 ∈ Cat ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 46 |
35 23
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → 𝐷 ∈ Cat ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → 𝐷 ∈ Cat ) |
| 48 |
|
simplrl |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → 𝑥 ∈ 𝐴 ) |
| 49 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → 𝑋 ∈ 𝐴 ) |
| 50 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) |
| 51 |
1 2 4 5 45 47 48 49 50
|
diag2 |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑋 ) ‘ 𝑚 ) = ( 𝐵 × { 𝑚 } ) ) |
| 52 |
51
|
oveq2d |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑋 ) ‘ 𝑚 ) ) = ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( 𝐵 × { 𝑚 } ) ) ) |
| 53 |
1 2 4 5 45 47 48 49 50 3
|
diag2cl |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → ( 𝐵 × { 𝑚 } ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| 54 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) |
| 55 |
17 3 4 6 37 53 54
|
fucco |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( 𝐵 × { 𝑚 } ) ) = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ) ) ) |
| 56 |
45
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 57 |
47
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 58 |
48
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 59 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) |
| 60 |
|
simpr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑗 ∈ 𝐵 ) |
| 61 |
1 56 57 2 58 59 4 60
|
diag11 |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = 𝑥 ) |
| 62 |
49
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 63 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 64 |
1 56 57 2 62 63 4 60
|
diag11 |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) = 𝑋 ) |
| 65 |
61 64
|
opeq12d |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 = 〈 𝑥 , 𝑋 〉 ) |
| 66 |
65
|
oveq1d |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) = ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) ) |
| 67 |
|
eqidd |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝑅 ‘ 𝑗 ) = ( 𝑅 ‘ 𝑗 ) ) |
| 68 |
|
vex |
⊢ 𝑚 ∈ V |
| 69 |
68
|
fvconst2 |
⊢ ( 𝑗 ∈ 𝐵 → ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) = 𝑚 ) |
| 70 |
69
|
adantl |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) = 𝑚 ) |
| 71 |
66 67 70
|
oveq123d |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑅 ‘ 𝑗 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ) = ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) |
| 72 |
71
|
mpteq2dva |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ‘ 𝑗 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑗 ) 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) ( ( 𝐵 × { 𝑚 } ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) |
| 73 |
52 55 72
|
3eqtrd |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑋 ) ‘ 𝑚 ) ) = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) |
| 74 |
73
|
eqeq2d |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) ∧ 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) ) → ( 𝑎 = ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑋 ) ‘ 𝑚 ) ) ↔ 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) ) |
| 75 |
74
|
reubidva |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ) ) → ( ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑋 ) ‘ 𝑚 ) ) ↔ ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) ) |
| 76 |
75
|
2ralbidva |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑅 ( 〈 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 〉 ( comp ‘ ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑋 ) ‘ 𝑚 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) ) |
| 77 |
36 43 76
|
3bitrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) → ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) ) |
| 78 |
33 77
|
biadanii |
⊢ ( 𝑋 ( ( oppFunc ‘ 𝐿 ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝐹 ) 𝑅 ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) ) |
| 79 |
11 78
|
bitri |
⊢ ( 𝑋 ( ( 𝐶 Limit 𝐷 ) ‘ 𝐹 ) 𝑅 ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 𝐹 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑎 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝑁 𝐹 ) ∃! 𝑚 ∈ ( 𝑥 𝐻 𝑋 ) 𝑎 = ( 𝑗 ∈ 𝐵 ↦ ( ( 𝑅 ‘ 𝑗 ) ( 〈 𝑥 , 𝑋 〉 · ( ( 1st ‘ 𝐹 ) ‘ 𝑗 ) ) 𝑚 ) ) ) ) |