| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmd.l |
|
| 2 |
|
islmd.a |
|
| 3 |
|
islmd.n |
|
| 4 |
|
islmd.b |
|
| 5 |
|
concl.k |
|
| 6 |
|
concl.x |
|
| 7 |
|
concl.y |
|
| 8 |
|
concom.z |
|
| 9 |
|
concom.m |
|
| 10 |
|
concom.j |
|
| 11 |
|
concom.o |
|
| 12 |
|
coccom.r |
|
| 13 |
3 12
|
nat1st2nd |
|
| 14 |
3 13 4 10 11 7 8 9
|
nati |
|
| 15 |
3 13
|
natrcl2 |
|
| 16 |
15
|
funcrcl3 |
|
| 17 |
15
|
funcrcl2 |
|
| 18 |
1 16 17 2 6 5 4 8
|
diag11 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
oveqd |
|
| 21 |
1 16 17 2 6 5 4 7
|
diag11 |
|
| 22 |
21
|
opeq2d |
|
| 23 |
22 18
|
oveq12d |
|
| 24 |
|
eqid |
|
| 25 |
1 16 17 2 6 5 4 7 10 24 8 9
|
diag12 |
|
| 26 |
|
eqidd |
|
| 27 |
23 25 26
|
oveq123d |
|
| 28 |
|
eqid |
|
| 29 |
4 2 15
|
funcf1 |
|
| 30 |
29 7
|
ffvelcdmd |
|
| 31 |
1 2 3 4 5 6 7 28 12
|
coccl |
|
| 32 |
2 28 24 16 30 11 6 31
|
catlid |
|
| 33 |
27 32
|
eqtrd |
|
| 34 |
14 20 33
|
3eqtr3rd |
|