| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initorcl |
|- ( x e. ( InitO ` C ) -> C e. Cat ) |
| 2 |
|
uobrcl |
|- ( x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) -> ( C e. Cat /\ ( (/) FuncCat C ) e. Cat ) ) |
| 3 |
2
|
simpld |
|- ( x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) -> C e. Cat ) |
| 4 |
|
0ex |
|- (/) e. _V |
| 5 |
4
|
a1i |
|- ( C e. Cat -> (/) e. _V ) |
| 6 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 7 |
6
|
a1i |
|- ( C e. Cat -> (/) = ( Base ` (/) ) ) |
| 8 |
|
id |
|- ( C e. Cat -> C e. Cat ) |
| 9 |
|
eqid |
|- ( (/) FuncCat C ) = ( (/) FuncCat C ) |
| 10 |
5 7 8 9
|
0fucterm |
|- ( C e. Cat -> ( (/) FuncCat C ) e. TermCat ) |
| 11 |
|
opex |
|- <. (/) , (/) >. e. _V |
| 12 |
11
|
snid |
|- <. (/) , (/) >. e. { <. (/) , (/) >. } |
| 13 |
9
|
fucbas |
|- ( (/) Func C ) = ( Base ` ( (/) FuncCat C ) ) |
| 14 |
8
|
0func |
|- ( C e. Cat -> ( (/) Func C ) = { <. (/) , (/) >. } ) |
| 15 |
13 14
|
eqtr3id |
|- ( C e. Cat -> ( Base ` ( (/) FuncCat C ) ) = { <. (/) , (/) >. } ) |
| 16 |
12 15
|
eleqtrrid |
|- ( C e. Cat -> <. (/) , (/) >. e. ( Base ` ( (/) FuncCat C ) ) ) |
| 17 |
|
eqid |
|- ( C DiagFunc (/) ) = ( C DiagFunc (/) ) |
| 18 |
|
0cat |
|- (/) e. Cat |
| 19 |
18
|
a1i |
|- ( C e. Cat -> (/) e. Cat ) |
| 20 |
17 8 19 9
|
diagcl |
|- ( C e. Cat -> ( C DiagFunc (/) ) e. ( C Func ( (/) FuncCat C ) ) ) |
| 21 |
10 16 20
|
isinito4 |
|- ( C e. Cat -> ( x e. ( InitO ` C ) <-> x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) ) ) |
| 22 |
1 3 21
|
pm5.21nii |
|- ( x e. ( InitO ` C ) <-> x e. dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) ) |
| 23 |
22
|
eqriv |
|- ( InitO ` C ) = dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) |
| 24 |
|
df-ov |
|- ( (/) ( C Colimit (/) ) (/) ) = ( ( C Colimit (/) ) ` <. (/) , (/) >. ) |
| 25 |
|
cmdfval2 |
|- ( ( C Colimit (/) ) ` <. (/) , (/) >. ) = ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) |
| 26 |
24 25
|
eqtri |
|- ( (/) ( C Colimit (/) ) (/) ) = ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) |
| 27 |
26
|
dmeqi |
|- dom ( (/) ( C Colimit (/) ) (/) ) = dom ( ( C DiagFunc (/) ) ( C UP ( (/) FuncCat C ) ) <. (/) , (/) >. ) |
| 28 |
23 27
|
eqtr4i |
|- ( InitO ` C ) = dom ( (/) ( C Colimit (/) ) (/) ) |