| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0fucterm.c |
|- ( ph -> C e. V ) |
| 2 |
|
0fucterm.b |
|- ( ph -> (/) = ( Base ` C ) ) |
| 3 |
|
0fucterm.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
0fucterm.q |
|- Q = ( C FuncCat D ) |
| 5 |
4
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 6 |
5
|
a1i |
|- ( ph -> ( C Func D ) = ( Base ` Q ) ) |
| 7 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
| 8 |
4 7
|
fuchom |
|- ( C Nat D ) = ( Hom ` Q ) |
| 9 |
8
|
a1i |
|- ( ph -> ( C Nat D ) = ( Hom ` Q ) ) |
| 10 |
|
simprl |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( f ( C Nat D ) g ) ) |
| 11 |
7 10
|
nat1st2nd |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 12 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 13 |
7 11 12
|
natfn |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a Fn ( Base ` C ) ) |
| 14 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> (/) = ( Base ` C ) ) |
| 15 |
14
|
fneq2d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( a Fn (/) <-> a Fn ( Base ` C ) ) ) |
| 16 |
13 15
|
mpbird |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a Fn (/) ) |
| 17 |
|
fn0 |
|- ( a Fn (/) <-> a = (/) ) |
| 18 |
16 17
|
sylib |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a = (/) ) |
| 19 |
|
simprr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( f ( C Nat D ) g ) ) |
| 20 |
7 19
|
nat1st2nd |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 21 |
7 20 12
|
natfn |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b Fn ( Base ` C ) ) |
| 22 |
14
|
fneq2d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( b Fn (/) <-> b Fn ( Base ` C ) ) ) |
| 23 |
21 22
|
mpbird |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b Fn (/) ) |
| 24 |
|
fn0 |
|- ( b Fn (/) <-> b = (/) ) |
| 25 |
23 24
|
sylib |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b = (/) ) |
| 26 |
18 25
|
eqtr4d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a = b ) |
| 27 |
26
|
ralrimivva |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
| 28 |
|
moel |
|- ( E* a a e. ( f ( C Nat D ) g ) <-> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
| 29 |
27 28
|
sylibr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> E* a a e. ( f ( C Nat D ) g ) ) |
| 30 |
|
0catg |
|- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. Cat ) |
| 31 |
1 2 30
|
syl2anc |
|- ( ph -> C e. Cat ) |
| 32 |
4 31 3
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 33 |
6 9 29 32
|
isthincd |
|- ( ph -> Q e. ThinCat ) |
| 34 |
|
opex |
|- <. (/) , (/) >. e. _V |
| 35 |
34
|
a1i |
|- ( ph -> <. (/) , (/) >. e. _V ) |
| 36 |
1 2 3
|
0funcg |
|- ( ph -> ( C Func D ) = { <. (/) , (/) >. } ) |
| 37 |
|
sneq |
|- ( f = <. (/) , (/) >. -> { f } = { <. (/) , (/) >. } ) |
| 38 |
37
|
eqeq2d |
|- ( f = <. (/) , (/) >. -> ( ( C Func D ) = { f } <-> ( C Func D ) = { <. (/) , (/) >. } ) ) |
| 39 |
35 36 38
|
spcedv |
|- ( ph -> E. f ( C Func D ) = { f } ) |
| 40 |
5
|
istermc |
|- ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) |
| 41 |
33 39 40
|
sylanbrc |
|- ( ph -> Q e. TermCat ) |