Metamath Proof Explorer


Theorem initocmd

Description: Initial objects are the object part of colimits of the empty diagram. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Assertion initocmd ( InitO ‘ 𝐶 ) = dom ( ∅ ( 𝐶 Colimit ∅ ) ∅ )

Proof

Step Hyp Ref Expression
1 initorcl ( 𝑥 ∈ ( InitO ‘ 𝐶 ) → 𝐶 ∈ Cat )
2 uobrcl ( 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ ) → ( 𝐶 ∈ Cat ∧ ( ∅ FuncCat 𝐶 ) ∈ Cat ) )
3 2 simpld ( 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ ) → 𝐶 ∈ Cat )
4 0ex ∅ ∈ V
5 4 a1i ( 𝐶 ∈ Cat → ∅ ∈ V )
6 base0 ∅ = ( Base ‘ ∅ )
7 6 a1i ( 𝐶 ∈ Cat → ∅ = ( Base ‘ ∅ ) )
8 id ( 𝐶 ∈ Cat → 𝐶 ∈ Cat )
9 eqid ( ∅ FuncCat 𝐶 ) = ( ∅ FuncCat 𝐶 )
10 5 7 8 9 0fucterm ( 𝐶 ∈ Cat → ( ∅ FuncCat 𝐶 ) ∈ TermCat )
11 opex ⟨ ∅ , ∅ ⟩ ∈ V
12 11 snid ⟨ ∅ , ∅ ⟩ ∈ { ⟨ ∅ , ∅ ⟩ }
13 9 fucbas ( ∅ Func 𝐶 ) = ( Base ‘ ( ∅ FuncCat 𝐶 ) )
14 8 0func ( 𝐶 ∈ Cat → ( ∅ Func 𝐶 ) = { ⟨ ∅ , ∅ ⟩ } )
15 13 14 eqtr3id ( 𝐶 ∈ Cat → ( Base ‘ ( ∅ FuncCat 𝐶 ) ) = { ⟨ ∅ , ∅ ⟩ } )
16 12 15 eleqtrrid ( 𝐶 ∈ Cat → ⟨ ∅ , ∅ ⟩ ∈ ( Base ‘ ( ∅ FuncCat 𝐶 ) ) )
17 eqid ( 𝐶 Δfunc ∅ ) = ( 𝐶 Δfunc ∅ )
18 0cat ∅ ∈ Cat
19 18 a1i ( 𝐶 ∈ Cat → ∅ ∈ Cat )
20 17 8 19 9 diagcl ( 𝐶 ∈ Cat → ( 𝐶 Δfunc ∅ ) ∈ ( 𝐶 Func ( ∅ FuncCat 𝐶 ) ) )
21 10 16 20 isinito4 ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( InitO ‘ 𝐶 ) ↔ 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ ) ) )
22 1 3 21 pm5.21nii ( 𝑥 ∈ ( InitO ‘ 𝐶 ) ↔ 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ ) )
23 22 eqriv ( InitO ‘ 𝐶 ) = dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ )
24 df-ov ( ∅ ( 𝐶 Colimit ∅ ) ∅ ) = ( ( 𝐶 Colimit ∅ ) ‘ ⟨ ∅ , ∅ ⟩ )
25 cmdfval2 ( ( 𝐶 Colimit ∅ ) ‘ ⟨ ∅ , ∅ ⟩ ) = ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ )
26 24 25 eqtri ( ∅ ( 𝐶 Colimit ∅ ) ∅ ) = ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ )
27 26 dmeqi dom ( ∅ ( 𝐶 Colimit ∅ ) ∅ ) = dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) ⟨ ∅ , ∅ ⟩ )
28 23 27 eqtr4i ( InitO ‘ 𝐶 ) = dom ( ∅ ( 𝐶 Colimit ∅ ) ∅ )