| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initorcl |
⊢ ( 𝑥 ∈ ( InitO ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 2 |
|
uobrcl |
⊢ ( 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) → ( 𝐶 ∈ Cat ∧ ( ∅ FuncCat 𝐶 ) ∈ Cat ) ) |
| 3 |
2
|
simpld |
⊢ ( 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) → 𝐶 ∈ Cat ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
4
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ ∈ V ) |
| 6 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 7 |
6
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ = ( Base ‘ ∅ ) ) |
| 8 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
| 9 |
|
eqid |
⊢ ( ∅ FuncCat 𝐶 ) = ( ∅ FuncCat 𝐶 ) |
| 10 |
5 7 8 9
|
0fucterm |
⊢ ( 𝐶 ∈ Cat → ( ∅ FuncCat 𝐶 ) ∈ TermCat ) |
| 11 |
|
opex |
⊢ 〈 ∅ , ∅ 〉 ∈ V |
| 12 |
11
|
snid |
⊢ 〈 ∅ , ∅ 〉 ∈ { 〈 ∅ , ∅ 〉 } |
| 13 |
9
|
fucbas |
⊢ ( ∅ Func 𝐶 ) = ( Base ‘ ( ∅ FuncCat 𝐶 ) ) |
| 14 |
8
|
0func |
⊢ ( 𝐶 ∈ Cat → ( ∅ Func 𝐶 ) = { 〈 ∅ , ∅ 〉 } ) |
| 15 |
13 14
|
eqtr3id |
⊢ ( 𝐶 ∈ Cat → ( Base ‘ ( ∅ FuncCat 𝐶 ) ) = { 〈 ∅ , ∅ 〉 } ) |
| 16 |
12 15
|
eleqtrrid |
⊢ ( 𝐶 ∈ Cat → 〈 ∅ , ∅ 〉 ∈ ( Base ‘ ( ∅ FuncCat 𝐶 ) ) ) |
| 17 |
|
eqid |
⊢ ( 𝐶 Δfunc ∅ ) = ( 𝐶 Δfunc ∅ ) |
| 18 |
|
0cat |
⊢ ∅ ∈ Cat |
| 19 |
18
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ ∈ Cat ) |
| 20 |
17 8 19 9
|
diagcl |
⊢ ( 𝐶 ∈ Cat → ( 𝐶 Δfunc ∅ ) ∈ ( 𝐶 Func ( ∅ FuncCat 𝐶 ) ) ) |
| 21 |
10 16 20
|
isinito4 |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( InitO ‘ 𝐶 ) ↔ 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) ) ) |
| 22 |
1 3 21
|
pm5.21nii |
⊢ ( 𝑥 ∈ ( InitO ‘ 𝐶 ) ↔ 𝑥 ∈ dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) ) |
| 23 |
22
|
eqriv |
⊢ ( InitO ‘ 𝐶 ) = dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) |
| 24 |
|
df-ov |
⊢ ( ∅ ( 𝐶 Colimit ∅ ) ∅ ) = ( ( 𝐶 Colimit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) |
| 25 |
|
cmdfval2 |
⊢ ( ( 𝐶 Colimit ∅ ) ‘ 〈 ∅ , ∅ 〉 ) = ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) |
| 26 |
24 25
|
eqtri |
⊢ ( ∅ ( 𝐶 Colimit ∅ ) ∅ ) = ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) |
| 27 |
26
|
dmeqi |
⊢ dom ( ∅ ( 𝐶 Colimit ∅ ) ∅ ) = dom ( ( 𝐶 Δfunc ∅ ) ( 𝐶 UP ( ∅ FuncCat 𝐶 ) ) 〈 ∅ , ∅ 〉 ) |
| 28 |
23 27
|
eqtr4i |
⊢ ( InitO ‘ 𝐶 ) = dom ( ∅ ( 𝐶 Colimit ∅ ) ∅ ) |