| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito4.1 |
⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 2 |
|
isinito4.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 1 ) ) |
| 3 |
|
isinito4.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 1 ) ) |
| 4 |
|
eqid |
⊢ ( SetCat ‘ 1o ) = ( SetCat ‘ 1o ) |
| 5 |
|
eqid |
⊢ ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) = ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) |
| 6 |
4 5
|
isinito3 |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ( 𝐶 UP ( SetCat ‘ 1o ) ) ∅ ) ) |
| 7 |
4
|
setc1obas |
⊢ 1o = ( Base ‘ ( SetCat ‘ 1o ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 1 ) = ( Base ‘ 1 ) |
| 9 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 11 |
3
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 12 |
11
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 13 |
4 5 12
|
funcsetc1ocl |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ∈ ( 𝐶 Func ( SetCat ‘ 1o ) ) ) |
| 14 |
|
setc1oterm |
⊢ ( SetCat ‘ 1o ) ∈ TermCat |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ TermCat ) |
| 16 |
7 8 10 2 13 3 15 1
|
uobeqterm |
⊢ ( 𝜑 → dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ( 𝐶 UP ( SetCat ‘ 1o ) ) ∅ ) = dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) |
| 17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝐼 ∈ dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ( 𝐶 UP ( SetCat ‘ 1o ) ) ∅ ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |
| 18 |
6 17
|
bitrid |
⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |