Metamath Proof Explorer


Theorem funcsetc1ocl

Description: The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypotheses funcsetc1o.1 1 = ( SetCat ‘ 1o )
funcsetc1o.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
funcsetc1o.c ( 𝜑𝐶 ∈ Cat )
Assertion funcsetc1ocl ( 𝜑𝐹 ∈ ( 𝐶 Func 1 ) )

Proof

Step Hyp Ref Expression
1 funcsetc1o.1 1 = ( SetCat ‘ 1o )
2 funcsetc1o.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
3 funcsetc1o.c ( 𝜑𝐶 ∈ Cat )
4 eqid ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 )
5 setc1oterm ( SetCat ‘ 1o ) ∈ TermCat
6 1 5 eqeltri 1 ∈ TermCat
7 6 a1i ( 𝜑1 ∈ TermCat )
8 7 termccd ( 𝜑1 ∈ Cat )
9 1 setc1obas 1o = ( Base ‘ 1 )
10 0lt1o ∅ ∈ 1o
11 10 a1i ( 𝜑 → ∅ ∈ 1o )
12 4 8 3 9 11 2 diag1cl ( 𝜑𝐹 ∈ ( 𝐶 Func 1 ) )