Description: The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| funcsetc1o.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | ||
| funcsetc1o.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | funcsetc1ocl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| 2 | funcsetc1o.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | |
| 3 | funcsetc1o.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | eqid | ⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) | |
| 5 | setc1oterm | ⊢ ( SetCat ‘ 1o ) ∈ TermCat | |
| 6 | 1 5 | eqeltri | ⊢ 1 ∈ TermCat |
| 7 | 6 | a1i | ⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 8 | 7 | termccd | ⊢ ( 𝜑 → 1 ∈ Cat ) |
| 9 | 1 | setc1obas | ⊢ 1o = ( Base ‘ 1 ) |
| 10 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 12 | 4 8 3 9 11 2 | diag1cl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 1 ) ) |