Description: The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetc1o.1 | |- .1. = ( SetCat ` 1o ) |
|
| funcsetc1o.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
||
| funcsetc1o.c | |- ( ph -> C e. Cat ) |
||
| Assertion | funcsetc1ocl | |- ( ph -> F e. ( C Func .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetc1o.1 | |- .1. = ( SetCat ` 1o ) |
|
| 2 | funcsetc1o.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
|
| 3 | funcsetc1o.c | |- ( ph -> C e. Cat ) |
|
| 4 | eqid | |- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
|
| 5 | setc1oterm | |- ( SetCat ` 1o ) e. TermCat |
|
| 6 | 1 5 | eqeltri | |- .1. e. TermCat |
| 7 | 6 | a1i | |- ( ph -> .1. e. TermCat ) |
| 8 | 7 | termccd | |- ( ph -> .1. e. Cat ) |
| 9 | 1 | setc1obas | |- 1o = ( Base ` .1. ) |
| 10 | 0lt1o | |- (/) e. 1o |
|
| 11 | 10 | a1i | |- ( ph -> (/) e. 1o ) |
| 12 | 4 8 3 9 11 2 | diag1cl | |- ( ph -> F e. ( C Func .1. ) ) |