Metamath Proof Explorer


Theorem funcsetc1ocl

Description: The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypotheses funcsetc1o.1
|- .1. = ( SetCat ` 1o )
funcsetc1o.f
|- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) )
funcsetc1o.c
|- ( ph -> C e. Cat )
Assertion funcsetc1ocl
|- ( ph -> F e. ( C Func .1. ) )

Proof

Step Hyp Ref Expression
1 funcsetc1o.1
 |-  .1. = ( SetCat ` 1o )
2 funcsetc1o.f
 |-  F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) )
3 funcsetc1o.c
 |-  ( ph -> C e. Cat )
4 eqid
 |-  ( .1. DiagFunc C ) = ( .1. DiagFunc C )
5 setc1oterm
 |-  ( SetCat ` 1o ) e. TermCat
6 1 5 eqeltri
 |-  .1. e. TermCat
7 6 a1i
 |-  ( ph -> .1. e. TermCat )
8 7 termccd
 |-  ( ph -> .1. e. Cat )
9 1 setc1obas
 |-  1o = ( Base ` .1. )
10 0lt1o
 |-  (/) e. 1o
11 10 a1i
 |-  ( ph -> (/) e. 1o )
12 4 8 3 9 11 2 diag1cl
 |-  ( ph -> F e. ( C Func .1. ) )