| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetc1o.1 |
|- .1. = ( SetCat ` 1o ) |
| 2 |
|
funcsetc1o.f |
|- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
| 3 |
|
funcsetc1o.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
funcsetc1o.b |
|- B = ( Base ` C ) |
| 5 |
|
funcsetc1o.h |
|- H = ( Hom ` C ) |
| 6 |
|
eqid |
|- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
| 7 |
|
setc1oterm |
|- ( SetCat ` 1o ) e. TermCat |
| 8 |
1 7
|
eqeltri |
|- .1. e. TermCat |
| 9 |
8
|
a1i |
|- ( ph -> .1. e. TermCat ) |
| 10 |
9
|
termccd |
|- ( ph -> .1. e. Cat ) |
| 11 |
1
|
setc1obas |
|- 1o = ( Base ` .1. ) |
| 12 |
|
0lt1o |
|- (/) e. 1o |
| 13 |
12
|
a1i |
|- ( ph -> (/) e. 1o ) |
| 14 |
|
eqid |
|- ( Id ` .1. ) = ( Id ` .1. ) |
| 15 |
6 10 3 11 13 2 4 5 14
|
diag1a |
|- ( ph -> F = <. ( B X. { (/) } ) , ( x e. B , y e. B |-> ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) >. ) |
| 16 |
|
df1o2 |
|- 1o = { (/) } |
| 17 |
16
|
xpeq2i |
|- ( B X. 1o ) = ( B X. { (/) } ) |
| 18 |
1 14
|
setc1oid |
|- ( ( Id ` .1. ) ` (/) ) = (/) |
| 19 |
18
|
sneqi |
|- { ( ( Id ` .1. ) ` (/) ) } = { (/) } |
| 20 |
16 19
|
eqtr4i |
|- 1o = { ( ( Id ` .1. ) ` (/) ) } |
| 21 |
20
|
xpeq2i |
|- ( ( x H y ) X. 1o ) = ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) |
| 22 |
21
|
a1i |
|- ( ( x e. B /\ y e. B ) -> ( ( x H y ) X. 1o ) = ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) |
| 23 |
22
|
mpoeq3ia |
|- ( x e. B , y e. B |-> ( ( x H y ) X. 1o ) ) = ( x e. B , y e. B |-> ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) |
| 24 |
17 23
|
opeq12i |
|- <. ( B X. 1o ) , ( x e. B , y e. B |-> ( ( x H y ) X. 1o ) ) >. = <. ( B X. { (/) } ) , ( x e. B , y e. B |-> ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) >. |
| 25 |
15 24
|
eqtr4di |
|- ( ph -> F = <. ( B X. 1o ) , ( x e. B , y e. B |-> ( ( x H y ) X. 1o ) ) >. ) |