| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetc1o.1 |
⊢ 1 = ( SetCat ‘ 1o ) |
| 2 |
|
funcsetc1o.f |
⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) |
| 3 |
|
funcsetc1o.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
funcsetc1o.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 5 |
|
funcsetc1o.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) |
| 7 |
|
setc1oterm |
⊢ ( SetCat ‘ 1o ) ∈ TermCat |
| 8 |
1 7
|
eqeltri |
⊢ 1 ∈ TermCat |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 10 |
9
|
termccd |
⊢ ( 𝜑 → 1 ∈ Cat ) |
| 11 |
1
|
setc1obas |
⊢ 1o = ( Base ‘ 1 ) |
| 12 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 14 |
|
eqid |
⊢ ( Id ‘ 1 ) = ( Id ‘ 1 ) |
| 15 |
6 10 3 11 13 2 4 5 14
|
diag1a |
⊢ ( 𝜑 → 𝐹 = 〈 ( 𝐵 × { ∅ } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) 〉 ) |
| 16 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 17 |
16
|
xpeq2i |
⊢ ( 𝐵 × 1o ) = ( 𝐵 × { ∅ } ) |
| 18 |
1 14
|
setc1oid |
⊢ ( ( Id ‘ 1 ) ‘ ∅ ) = ∅ |
| 19 |
18
|
sneqi |
⊢ { ( ( Id ‘ 1 ) ‘ ∅ ) } = { ∅ } |
| 20 |
16 19
|
eqtr4i |
⊢ 1o = { ( ( Id ‘ 1 ) ‘ ∅ ) } |
| 21 |
20
|
xpeq2i |
⊢ ( ( 𝑥 𝐻 𝑦 ) × 1o ) = ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) |
| 22 |
21
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 𝐻 𝑦 ) × 1o ) = ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) |
| 23 |
22
|
mpoeq3ia |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) |
| 24 |
17 23
|
opeq12i |
⊢ 〈 ( 𝐵 × 1o ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) 〉 = 〈 ( 𝐵 × { ∅ } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) 〉 |
| 25 |
15 24
|
eqtr4di |
⊢ ( 𝜑 → 𝐹 = 〈 ( 𝐵 × 1o ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) 〉 ) |