Metamath Proof Explorer


Theorem funcsetc1o

Description: Value of the functor to the trivial category. The converse is also true because F would be the empty set if C were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypotheses funcsetc1o.1 1 = ( SetCat ‘ 1o )
funcsetc1o.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
funcsetc1o.c ( 𝜑𝐶 ∈ Cat )
funcsetc1o.b 𝐵 = ( Base ‘ 𝐶 )
funcsetc1o.h 𝐻 = ( Hom ‘ 𝐶 )
Assertion funcsetc1o ( 𝜑𝐹 = ⟨ ( 𝐵 × 1o ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 funcsetc1o.1 1 = ( SetCat ‘ 1o )
2 funcsetc1o.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
3 funcsetc1o.c ( 𝜑𝐶 ∈ Cat )
4 funcsetc1o.b 𝐵 = ( Base ‘ 𝐶 )
5 funcsetc1o.h 𝐻 = ( Hom ‘ 𝐶 )
6 eqid ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 )
7 setc1oterm ( SetCat ‘ 1o ) ∈ TermCat
8 1 7 eqeltri 1 ∈ TermCat
9 8 a1i ( 𝜑1 ∈ TermCat )
10 9 termccd ( 𝜑1 ∈ Cat )
11 1 setc1obas 1o = ( Base ‘ 1 )
12 0lt1o ∅ ∈ 1o
13 12 a1i ( 𝜑 → ∅ ∈ 1o )
14 eqid ( Id ‘ 1 ) = ( Id ‘ 1 )
15 6 10 3 11 13 2 4 5 14 diag1a ( 𝜑𝐹 = ⟨ ( 𝐵 × { ∅ } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) ⟩ )
16 df1o2 1o = { ∅ }
17 16 xpeq2i ( 𝐵 × 1o ) = ( 𝐵 × { ∅ } )
18 1 14 setc1oid ( ( Id ‘ 1 ) ‘ ∅ ) = ∅
19 18 sneqi { ( ( Id ‘ 1 ) ‘ ∅ ) } = { ∅ }
20 16 19 eqtr4i 1o = { ( ( Id ‘ 1 ) ‘ ∅ ) }
21 20 xpeq2i ( ( 𝑥 𝐻 𝑦 ) × 1o ) = ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } )
22 21 a1i ( ( 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 𝐻 𝑦 ) × 1o ) = ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) )
23 22 mpoeq3ia ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) )
24 17 23 opeq12i ⟨ ( 𝐵 × 1o ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) ⟩ = ⟨ ( 𝐵 × { ∅ } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) ⟩
25 15 24 eqtr4di ( 𝜑𝐹 = ⟨ ( 𝐵 × 1o ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) ⟩ )