| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito2.1 |
⊢ 1 = ( SetCat ‘ 1o ) |
| 2 |
|
isinito2.f |
⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) |
| 3 |
|
isinito2lem.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
isinito2lem.i |
⊢ ( 𝜑 → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 5 |
|
reutru |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ) |
| 6 |
|
0ex |
⊢ ∅ ∈ V |
| 7 |
|
eqeq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 8 |
7
|
reubidv |
⊢ ( 𝑦 = ∅ → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 9 |
6 8
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) |
| 10 |
|
eqid |
⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) |
| 11 |
|
setc1oterm |
⊢ ( SetCat ‘ 1o ) ∈ TermCat |
| 12 |
1 11
|
eqeltri |
⊢ 1 ∈ TermCat |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 14 |
13
|
termccd |
⊢ ( 𝜑 → 1 ∈ Cat ) |
| 15 |
1
|
setc1obas |
⊢ 1o = ( Base ‘ 1 ) |
| 16 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 19 |
10 14 3 15 17 2 18 4
|
diag11 |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) = ∅ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) = ∅ ) |
| 21 |
20
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 = 〈 ∅ , ∅ 〉 ) |
| 22 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 1 ∈ Cat ) |
| 23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 24 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∅ ∈ 1o ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 26 |
10 22 23 15 24 2 18 25
|
diag11 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) = ∅ ) |
| 27 |
21 26
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ∅ ) ) |
| 28 |
|
snex |
⊢ { 〈 ∅ , ∅ , ∅ 〉 } ∈ V |
| 29 |
28
|
ovsn2 |
⊢ ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ∅ ) = { 〈 ∅ , ∅ , ∅ 〉 } |
| 30 |
27 29
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = { 〈 ∅ , ∅ , ∅ 〉 } ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = { 〈 ∅ , ∅ , ∅ 〉 } ) |
| 32 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 1 ∈ TermCat ) |
| 33 |
32
|
termccd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 1 ∈ Cat ) |
| 34 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐶 ∈ Cat ) |
| 35 |
16
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ ∈ 1o ) |
| 36 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 37 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 38 |
|
eqid |
⊢ ( Id ‘ 1 ) = ( Id ‘ 1 ) |
| 39 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 41 |
10 33 34 15 35 2 18 36 37 38 39 40
|
diag12 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) = ( ( Id ‘ 1 ) ‘ ∅ ) ) |
| 42 |
1 38
|
setc1oid |
⊢ ( ( Id ‘ 1 ) ‘ ∅ ) = ∅ |
| 43 |
41 42
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) = ∅ ) |
| 44 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ = ∅ ) |
| 45 |
31 43 44
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) = ( ∅ { 〈 ∅ , ∅ , ∅ 〉 } ∅ ) ) |
| 46 |
6
|
ovsn2 |
⊢ ( ∅ { 〈 ∅ , ∅ , ∅ 〉 } ∅ ) = ∅ |
| 47 |
45 46
|
eqtr2di |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) |
| 48 |
|
tbtru |
⊢ ( ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ( ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ⊤ ) ) |
| 49 |
47 48
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ⊤ ) ) |
| 50 |
49
|
reubidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ) ) |
| 51 |
9 50
|
bitr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ↔ ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 52 |
26
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) ) |
| 53 |
|
1oex |
⊢ 1o ∈ V |
| 54 |
53
|
ovsn2 |
⊢ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) = 1o |
| 55 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 56 |
54 55
|
eqtri |
⊢ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) = { ∅ } |
| 57 |
52 56
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = { ∅ } ) |
| 58 |
57
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 59 |
51 58
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ↔ ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 60 |
5 59
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 61 |
60
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 62 |
18 37 3 4
|
isinito |
⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
| 63 |
1
|
setc1ohomfval |
⊢ { 〈 ∅ , ∅ , 1o 〉 } = ( Hom ‘ 1 ) |
| 64 |
1
|
setc1ocofval |
⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } = ( comp ‘ 1 ) |
| 65 |
1 2 3
|
funcsetc1ocl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 1 ) ) |
| 66 |
65
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 67 |
19
|
oveq2d |
⊢ ( 𝜑 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) ) |
| 68 |
67 54
|
eqtrdi |
⊢ ( 𝜑 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = 1o ) |
| 69 |
16 68
|
eleqtrrid |
⊢ ( 𝜑 → ∅ ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) ) |
| 70 |
18 15 37 63 64 17 66 4 69
|
isup |
⊢ ( 𝜑 → ( 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 71 |
61 62 70
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 72 |
65
|
up1st2ndb |
⊢ ( 𝜑 → ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ↔ 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 73 |
71 72
|
bitr4d |
⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |