Metamath Proof Explorer


Theorem isinito2lem

Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypotheses isinito2.1 1 = ( SetCat ‘ 1o )
isinito2.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
isinito2lem.c ( 𝜑𝐶 ∈ Cat )
isinito2lem.i ( 𝜑𝐼 ∈ ( Base ‘ 𝐶 ) )
Assertion isinito2lem ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) )

Proof

Step Hyp Ref Expression
1 isinito2.1 1 = ( SetCat ‘ 1o )
2 isinito2.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
3 isinito2lem.c ( 𝜑𝐶 ∈ Cat )
4 isinito2lem.i ( 𝜑𝐼 ∈ ( Base ‘ 𝐶 ) )
5 reutru ( ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ )
6 0ex ∅ ∈ V
7 eqeq1 ( 𝑦 = ∅ → ( 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
8 7 reubidv ( 𝑦 = ∅ → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
9 6 8 ralsn ( ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) )
10 eqid ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 )
11 setc1oterm ( SetCat ‘ 1o ) ∈ TermCat
12 1 11 eqeltri 1 ∈ TermCat
13 12 a1i ( 𝜑1 ∈ TermCat )
14 13 termccd ( 𝜑1 ∈ Cat )
15 1 setc1obas 1o = ( Base ‘ 1 )
16 0lt1o ∅ ∈ 1o
17 16 a1i ( 𝜑 → ∅ ∈ 1o )
18 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
19 10 14 3 15 17 2 18 4 diag11 ( 𝜑 → ( ( 1st𝐹 ) ‘ 𝐼 ) = ∅ )
20 19 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐹 ) ‘ 𝐼 ) = ∅ )
21 20 opeq2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ = ⟨ ∅ , ∅ ⟩ )
22 14 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 1 ∈ Cat )
23 3 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat )
24 16 a1i ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∅ ∈ 1o )
25 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
26 10 22 23 15 24 2 18 25 diag11 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) = ∅ )
27 21 26 oveq12d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) = ( ⟨ ∅ , ∅ ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ∅ ) )
28 snex { ⟨ ∅ , ∅ , ∅ ⟩ } ∈ V
29 28 ovsn2 ( ⟨ ∅ , ∅ ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ∅ ) = { ⟨ ∅ , ∅ , ∅ ⟩ }
30 27 29 eqtrdi ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) = { ⟨ ∅ , ∅ , ∅ ⟩ } )
31 30 adantr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) = { ⟨ ∅ , ∅ , ∅ ⟩ } )
32 12 a1i ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 1 ∈ TermCat )
33 32 termccd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 1 ∈ Cat )
34 3 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐶 ∈ Cat )
35 16 a1i ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ ∈ 1o )
36 4 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) )
37 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
38 eqid ( Id ‘ 1 ) = ( Id ‘ 1 )
39 simplr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
40 simpr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) )
41 10 33 34 15 35 2 18 36 37 38 39 40 diag12 ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) = ( ( Id ‘ 1 ) ‘ ∅ ) )
42 1 38 setc1oid ( ( Id ‘ 1 ) ‘ ∅ ) = ∅
43 41 42 eqtrdi ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) = ∅ )
44 eqidd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ = ∅ )
45 31 43 44 oveq123d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) = ( ∅ { ⟨ ∅ , ∅ , ∅ ⟩ } ∅ ) )
46 6 ovsn2 ( ∅ { ⟨ ∅ , ∅ , ∅ ⟩ } ∅ ) = ∅
47 45 46 eqtr2di ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) )
48 tbtru ( ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ( ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ⊤ ) )
49 47 48 sylib ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ⊤ ) )
50 49 reubidva ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ) )
51 9 50 bitr2id ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ↔ ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
52 26 oveq2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) = ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ∅ ) )
53 1oex 1o ∈ V
54 53 ovsn2 ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ∅ ) = 1o
55 df1o2 1o = { ∅ }
56 54 55 eqtri ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ∅ ) = { ∅ }
57 52 56 eqtrdi ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) = { ∅ } )
58 57 raleqdv ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
59 51 58 bitr4d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ↔ ∀ 𝑦 ∈ ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
60 5 59 bitrid ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑦 ∈ ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
61 60 ralbidva ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
62 18 37 3 4 isinito ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) )
63 1 setc1ohomfval { ⟨ ∅ , ∅ , 1o ⟩ } = ( Hom ‘ 1 )
64 1 setc1ocofval { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } = ( comp ‘ 1 )
65 1 2 3 funcsetc1ocl ( 𝜑𝐹 ∈ ( 𝐶 Func 1 ) )
66 65 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 1 ) ( 2nd𝐹 ) )
67 19 oveq2d ( 𝜑 → ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝐼 ) ) = ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ∅ ) )
68 67 54 eqtrdi ( 𝜑 → ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝐼 ) ) = 1o )
69 16 68 eleqtrrid ( 𝜑 → ∅ ∈ ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝐼 ) ) )
70 18 15 37 63 64 17 66 4 69 isup ( 𝜑 → ( 𝐼 ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐶 UP 1 ) ∅ ) ∅ ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd𝐹 ) 𝑥 ) ‘ 𝑓 ) ( ⟨ ∅ , ( ( 1st𝐹 ) ‘ 𝐼 ) ⟩ { ⟨ ⟨ ∅ , ∅ ⟩ , ∅ , { ⟨ ∅ , ∅ , ∅ ⟩ } ⟩ } ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∅ ) ) )
71 61 62 70 3bitr4d ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐶 UP 1 ) ∅ ) ∅ ) )
72 65 up1st2ndb ( 𝜑 → ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ↔ 𝐼 ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐶 UP 1 ) ∅ ) ∅ ) )
73 71 72 bitr4d ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) )