| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito2.1 |
⊢ 1 = ( SetCat ‘ 1o ) |
| 2 |
|
isinito2.f |
⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) |
| 3 |
|
initorcl |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
4
|
initoo2 |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 6 |
1 2 3 5
|
isinito2lem |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 7 |
6
|
ibi |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 8 |
|
id |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 9 |
8
|
up1st2nd |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 10 |
9
|
uprcl2 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 11 |
10
|
funcrcl2 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐶 ∈ Cat ) |
| 12 |
9 4
|
uprcl4 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 13 |
1 2 11 12
|
isinito2lem |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 14 |
13
|
ibir |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 15 |
7 14
|
impbii |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |