Metamath Proof Explorer


Theorem isinito3

Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypotheses isinito2.1 1 = ( SetCat ‘ 1o )
isinito2.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
Assertion isinito3 ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) )

Proof

Step Hyp Ref Expression
1 isinito2.1 1 = ( SetCat ‘ 1o )
2 isinito2.f 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ )
3 relup Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ )
4 1 2 isinito2 ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ )
5 4 biimpi ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ )
6 releldm ( ( Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∧ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) → 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) )
7 3 5 6 sylancr ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) )
8 releldmb ( Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) → ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ↔ ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) )
9 3 8 ax-mp ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ↔ ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 )
10 id ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 )
11 10 up1st2nd ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝐼 ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐶 UP 1 ) ∅ ) 𝑦 )
12 1 setc1ohomfval { ⟨ ∅ , ∅ , 1o ⟩ } = ( Hom ‘ 1 )
13 11 12 uprcl5 ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝑦 ∈ ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝐼 ) ) )
14 eqid ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 )
15 setc1oterm ( SetCat ‘ 1o ) ∈ TermCat
16 1 15 eqeltri 1 ∈ TermCat
17 16 a1i ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦1 ∈ TermCat )
18 17 termccd ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦1 ∈ Cat )
19 11 uprcl2 ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( 1st𝐹 ) ( 𝐶 Func 1 ) ( 2nd𝐹 ) )
20 19 funcrcl2 ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝐶 ∈ Cat )
21 1 setc1obas 1o = ( Base ‘ 1 )
22 11 21 uprcl3 ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ∅ ∈ 1o )
23 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
24 11 23 uprcl4 ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝐼 ∈ ( Base ‘ 𝐶 ) )
25 14 18 20 21 22 2 23 24 diag11 ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ( 1st𝐹 ) ‘ 𝐼 ) = ∅ )
26 25 oveq2d ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝐼 ) ) = ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ∅ ) )
27 1oex 1o ∈ V
28 27 ovsn2 ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ∅ ) = 1o
29 26 28 eqtrdi ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ∅ { ⟨ ∅ , ∅ , 1o ⟩ } ( ( 1st𝐹 ) ‘ 𝐼 ) ) = 1o )
30 13 29 eleqtrd ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝑦 ∈ 1o )
31 el1o ( 𝑦 ∈ 1o𝑦 = ∅ )
32 30 31 sylib ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝑦 = ∅ )
33 10 32 breqtrd ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ )
34 33 4 sylibr ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝐼 ∈ ( InitO ‘ 𝐶 ) )
35 34 exlimiv ( ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦𝐼 ∈ ( InitO ‘ 𝐶 ) )
36 9 35 sylbi ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) → 𝐼 ∈ ( InitO ‘ 𝐶 ) )
37 7 36 impbii ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) )