| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito2.1 |
⊢ 1 = ( SetCat ‘ 1o ) |
| 2 |
|
isinito2.f |
⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) |
| 3 |
|
relup |
⊢ Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) |
| 4 |
1 2
|
isinito2 |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 5 |
4
|
biimpi |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 6 |
|
releldm |
⊢ ( ( Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∧ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) → 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ) |
| 7 |
3 5 6
|
sylancr |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ) |
| 8 |
|
releldmb |
⊢ ( Rel ( 𝐹 ( 𝐶 UP 1 ) ∅ ) → ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ↔ ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) ) |
| 9 |
3 8
|
ax-mp |
⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ↔ ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) |
| 10 |
|
id |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) |
| 11 |
10
|
up1st2nd |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) 𝑦 ) |
| 12 |
1
|
setc1ohomfval |
⊢ { 〈 ∅ , ∅ , 1o 〉 } = ( Hom ‘ 1 ) |
| 13 |
11 12
|
uprcl5 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) ) |
| 14 |
|
eqid |
⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) |
| 15 |
|
setc1oterm |
⊢ ( SetCat ‘ 1o ) ∈ TermCat |
| 16 |
1 15
|
eqeltri |
⊢ 1 ∈ TermCat |
| 17 |
16
|
a1i |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 1 ∈ TermCat ) |
| 18 |
17
|
termccd |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 1 ∈ Cat ) |
| 19 |
11
|
uprcl2 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 20 |
19
|
funcrcl2 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐶 ∈ Cat ) |
| 21 |
1
|
setc1obas |
⊢ 1o = ( Base ‘ 1 ) |
| 22 |
11 21
|
uprcl3 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ∅ ∈ 1o ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 24 |
11 23
|
uprcl4 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 25 |
14 18 20 21 22 2 23 24
|
diag11 |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) = ∅ ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) ) |
| 27 |
|
1oex |
⊢ 1o ∈ V |
| 28 |
27
|
ovsn2 |
⊢ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) = 1o |
| 29 |
26 28
|
eqtrdi |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = 1o ) |
| 30 |
13 29
|
eleqtrd |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝑦 ∈ 1o ) |
| 31 |
|
el1o |
⊢ ( 𝑦 ∈ 1o ↔ 𝑦 = ∅ ) |
| 32 |
30 31
|
sylib |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝑦 = ∅ ) |
| 33 |
10 32
|
breqtrd |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 34 |
33 4
|
sylibr |
⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 35 |
34
|
exlimiv |
⊢ ( ∃ 𝑦 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) 𝑦 → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 36 |
9 35
|
sylbi |
⊢ ( 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 37 |
7 36
|
impbii |
⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ) |